ZnO Nanoparticles Prepared by Hydrothermal Method and their Role on Gene Expression of TA System Type II Genes in Carbapenem-resistant Klebsiella pneumoniae

Authors

  • Saad H. Abood
  • Waad M. Raoof
  • Mohammed F. Al-Marjani

DOI:

https://doi.org/10.60988/p.v37i3.248

Keywords:

ZnO nanopar- ticle; Hydrothermal method; Carbapenem; K. pneumonia Type II TA system.

Abstract

ZnO nanoparticles exhibit significant antibacterial activity against numerous pathogenic organisms in vitro and in vivo via penetration through the outer bacterial membrane leading to cytotoxicity or the generation of reactive oxygen species. This study examines the effects of hydrothermally produced ZnO nanoparticles on genes involved in toxin-antitoxin systems and the use of nanoparticles as antibiofilm in carbapenem-resistant Klebsiella pneumoniae. The result of the antibi- otics sensitivity showed variable activity against K. pneumoniae, the isolates showed high resistance to carbapenem antibiotics including Imipenem (84%), and Meropenem (62%). The outcome demonstrat- ed that ZnO nanoparticles have a 68% inhibitory effect on biofilm de- velopment. Using the microtiter plate method, the MIC concentration of ZnO nanoparticles as antibacterials was 19.5μg/ml. Several tech- niques were used to characterize ZnONPs: X-ray Diffraction Analysis (XRD), UV-visible spectroscopy, and Field emission scanning Electron microscopic (FESEM). The study’s real-time PCR findings showed that after being treated with ZnO nanoparticles, the expression levels of the type II toxin-antitoxin genes (mqsR, mqsA, mazE, mazF, relE,relB, and hipB) had decreased.

Author Biographies

Saad H. Abood

College of Education, Al-Iraqia University, Baghdad, Iraq.
College of Science, Tikrit University, Tikrit, Iraq.

Waad M. Raoof

College of Science, Tikrit University, Tikrit, Iraq.

Mohammed F. Al-Marjani

College of Science, Mustansiriyah University, Baghdad, Iraq.

References

1. Mohana S., Sumathi S. Synthesis of zinc oxide using Agaricus bisporus and its in-vitro biological activities. J. Environ. Chem. Eng. 8(5), 104192, 1-8, 2020.

2. Khaleel L.W., Abdulhamed A.A. Antidiabetic effect of Glycyrrhizin glabra extract and Glycyrrhiza glabra Silver nanoparticle in female rats. Pharmakeftiki. 36(3), 67-82, 2024.

3. Hamad A.M., Atiyea Q.M., Hameed D.N., Dalaf A.H. Green synthesis of copper nanoparticles using strawberry leaves and study of properties, anti-cancer action, and activity against bacteria isolated from Covid-19 patients. Karbala Int. J. Mod. Sci. 9(1), 1-17, 2023.

4. Kumar R., Umar A., Kumar G., Nalwa H.S. Antimicrobial properties of ZnO nanomaterials: A review. Ceram. Int. 43(5), 3940-61, 2017.

5. Hamad A.M., Atiyea Q.M. Study the effect of zinc oxide nanoparticles and dianthus caryophyllus L. extract on streptococcus mutans isolated from human dental caries in vitro. InAIP Conference Proceedings. 2398(1), 1-10, 2022.

6. Bordes P., Genevaux P. Control of toxin-antitoxin systems by proteases in Mycobacterium tuberculosis. Front. Mol. Biosci. 8,691399, 1-10, 2021.

7. Wojciechowska M., Równicki M., Mieczkowski A., Miszkiewicz J., Trylska J. Antibacterial peptide nucleic acids—facts and perspectives. Molecules. 25(3), 1-22, 2020.

8. Chattopadhyay D., Stevenson S., Broekgaarden F., Antonini F., Belczynski K. Modelling the formation of the first two neutron star–black hole mergers, GW200105 and GW200115: metallicity, chirp masses, and merger remnant spins. Mon. Not. R. Astron. Soc. 513(4), 5780-9, 2022.‏

9. Horesh G., Fino C., Harms A., Dorman M.J., Parts L., Gerdes K., Heinz E., Thomson N.R. Type II and type IV toxin–antitoxin systems show different evolutionary patterns in the global Klebsiella pneumoniae population. Nucleic Acids Res. 48(8), 4357-70, 2020.

10. Leplae R., Geeraerts D., Hallez R., Guglielmini J., Dreze P., Van Melderen L. Diversity of bacterial type II toxin–antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acids Res. 39(13),5513-25, 2011.

11. Brown B.L., Grigoriu S., Kim Y., Arruda J.M., Davenport A., Wood T.K., Peti W., Page R. Three dimensional structure of the MqsR: MqsA complex: a novel TA pair comprised of a toxin homologous to RelE and an antitoxin with unique properties. PLoS Pathogens. 5(12), e1000706, 2009.

12. Takagi H., Kakuta Y., Okada T., Yao M., Tanaka I., Kimura M. Crystal structure of archaeal toxin-antitoxin RelE–RelB complex with implications for toxin activity and antitoxin effects. Nat. Struct. Mol. Biol. 12(4), 327-31, 2005.

13. Kamada K., Hanaoka F. Conformational change in the catalytic site of the ribonuclease YoeB toxin by YefM antitoxin. Mol. Cell. 19(4), 497-509, 2005.

14. Zielenkiewicz U., Cegłowski P. The toxin-antitoxin system of the streptococcal plasmid pSM19035. J. Bacteriol. 187(17), 6094-105, 2005.

15. Aizenman E., Engelberg-Kulka H., Glaser G. An Escherichia coli chromosomal” addiction module” regulated by guanosine [corrected] 3’, 5’-bispyrophosphate: a model for programmed bacterial cell death. Proc. Natl. Acad. Sci. 93(12), 6059-63, 1996.

16. Al-Taie A., Hussein A.N., Albasry Z. A cross-sectional study of patients’ practices, knowledge and attitudes of antibiotics among Iraqi population. J. Infect. Dev. Ctries. 15(12), 1845-53, 2021.

17. Salim K.S., Alsabah A.S., Taghi H.S. Misuse of antibiotics in Iraq: A review of Iraqi published studies. Al-Mustansiriyah J. Sci. 21(2), 15-20, 2021.

18. Nirwati H., Sinanjung K., Fahrunissa F., Wijaya F., Napitupulu S., Hati V.P., Hakim M.S., Meliala A., Aman A.T., Nuryastuti T. Biofilm formation and antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia. InBMC Proceedings. 13, 1-8, 2019.

19. Mohammed H.H., Saadi A.T., Yaseen N.A. detection of carbapenem antibiotic resistance in klebsiella pneumonia in Duhok city/Kurdistan region/Iraq. Duhok Med. J. 14(1), 28-43, 2020.

20. Zhao Q., Guo L., Wang L.F., Zhao Q., Shen D.X. Prevalence and characteristics of surgical site hypervirulent Klebsiella pneumoniae isolates. J. Clin. Lab. Anal. 34(9), e23364, 2020.

21. Akshay K., Roy A., Snega R. Aspergillus flavus Mediated Extracellular One-pot Synthesis of Zirconium and Titanium Oxide Nanoparticles and their Antioxidant and Antiinflammatory Efficacy Study. Texila Int. J. Public Health. 13(1),145-154, 2025.

22. Gopalakrishnan K., Ramesh A., Devendran A., Palaniyandi S., Elumalai L., Loganathan K., Elumalai P., Anbazhagan G.K. Anti-biofilm Effects of Resin-Modified Glass-Ionomers Incorporated with Silver Nanoparticles and Sodium Fluoride. Texila Int. J. Public Health 13(1), 179-187, 2025.

23. Sebastian S., Martin T.M., Kumar M.S.K. Nanoparticle-Driven Healing: Evaluating Chitosan-Copper in Zebrafish Wound Recovery. Texila Int. J. Public Health 13(1), 332-342, 2025.

24. Ryntathiang I., Chaudhary D.G., Pooja Y., .Behera A., Chandrasekaran Y., Jothinathan M.K.D. Ecofriendly Synthesis of Cobalt Nanoparticles Using Millettia pinnata and Evaluation of Embryonic Toxicology and Anticancer Activity. Texila Int. J. Public Health 13(1), 487-493, 2025.

25. Dinesh G., Lakshmi T., Rajeshkumar S. Green Synthesis of Selenium Nanoparticles using Vaccinium Subg. Oxycoccus for Antioxidant, Anti-Inflammatory, and Cytotoxic Effect. Texila Int. J. Public Health 13(1), 645-659, 2025.

26. Ahmed B., Ameen F., Rizvi A., Ali K., Sonbol H., Zaidi A., Khan M.S., Musarrat J. Destruction of cell topography, morphology, membrane, inhibition of respiration, biofilm formation, and bioactive molecule production by nanoparticles of Ag, ZnO, CuO, TiO2, and Al2O3 toward beneficial soil bacteria. ACS Omega. 5(14), 7861-76, 2020.

27. Samanje J., Mohammed A.S., Al-Hamami M.S. Phenotypic and Genotypic Detection of Extended-spectrum β-lactamase production by Klebsiella pneumoniae Isolated from Different Clinical Samples in Baghdad, Iraq. J. Pure Appl. Microbiol. 15(3), 1681-8, 2021.

28. Annavajhala M.K., Gomez-Simmonds A., Uhlemann A.C. Multidrug-resistant Enterobacter cloacae complex emerging as a global, diversifying threat. Front. Microbiol. 10:44, 1-8, 2019.

29. Kowalska J., Maćkiw E., Stasiak M., Kucharek K., Postupolski J. Biofilm-forming ability of pathogenic bacteria isolated from retail food in Poland. J. Food Prot. 83(12), 2032-40, 2020.

30. Babapour E., Haddadi A., Mirnejad R., Angaji S.A., Amirmozafari N. Biofilm formation in clinical isolates of nosocomial Acinetobacter baumannii and its relationship with multidrug resistance. Asian Pac. J. Trop. Biomed. 6(6), 528-33, 2016.

31. Salih A.Y., Al-Taii H.A., Ismael N.S., Merkhan M.M. Inhibition of Biofilm Formation and Pyocyanin Production from Multidrug Resistance P. aeruginosa by Using Vitamin C, Salicylic Acid, and Multisera. Texila Int. J. Public Health 12(4), 1-12, 2024.

32. Jasim S.A., Abdulrazzaq S.A., Saleh R.O. Virulence Factors of Klebsiella pneumoniae Isolates from Iraqi Patients. Sys. Rev. Pharm. 11(6), 916-921, 2020

33. Yaseen S.M., Abid H.A., Kadhim A.A., Aboglida E.E. Antibacterial activity of palm heart extracts collected from Iraqi Phoenix dactylifera L. J. Tech. 1(1), 52-9, 2019.

34. Mahmood, I.M. Genotypic and Phenotypic Detection of Hypervirulent Klebsiella pneumoniae Isolated from Clinical Specimens in Baghdad Hospitals. Thesis Mustansiriyah University. 2022.

35. Al Husseini L.B., Maleki A., Al Marjani M.F. Antisense mqsR-PNA as a putative target to the eradication of Pseudomonas aeruginosa persisters. New Microbes New Infect. 41,100868, 2021.

36. Hemati S., Azizi-Jalilian F., Pakzad I., Taherikalani M., Maleki A., Karimi S., Monjezei A., Mahdavi Z., Fadavi M.R., Sayehmiri K., Sadeghifard N. The correlation between the presence of quorum sensing, toxin-antitoxin system genes and MIC values with ability of biofilm formation in clinical isolates of Pseudomonas aeruginosa. Iran J. Microbiol. 6(3), 133-139, 2014.

37. Karimi S., Ghafourian S., Kalani M.T., Jalilian F.A., Hemati S., Sadeghifard N. Association between toxin-antitoxin systems and biofilm formation. Jundishapur J. Microbiol. 8(1), e14540, 2014.

38. Khalid I, Nayyef NS, Merkhan MM. A Taxonomic Study comparing the two types of Medicinal Leeches available in Iraq. Res. J. Pharm.Tech.15(3), 1119-22, 2022.

39. Arato V., Raso M.M., Gasperini G., Berlanda Scorza F., Micoli F. Prophylaxis and treatment against Klebsiella pneumoniae: current insights on this emerging anti-microbial resistant global threat. Int. J. Mol. Sci. 22(8), 4042, 1-20, 2021.

40. Wang G., Zhao G., Chao X., Xie L., Wang H. The characteristic of virulence, biofilm and antibiotic resistance of Klebsiella pneumoniae. Int. J. Environ. Res. Public Health. 17(17), 6278, 2020

41. Mędrzycka-Dąbrowska W., Lange S., Zorena K., Dąbrowski S., Ozga D., Tomaszek L. Carbapenem-resistant Klebsiella pneumoniae infections in ICU COVID-19 patients—A scoping review. J. Clin. Med. 10(10), 2067, 2021.

42. Rees C.A., Nasir M., Smolinska A., Lewis A.E., Kane K.R., Kossmann S.E., Sezer O., Zucchi P.C., Doi Y., Hirsch E.B., Hill J.E. Detection of high-risk carbapenem-resistant Klebsiella pneumoniae and Enterobacter cloacae isolates using volatile molecular profiles. Sci. Rep. 8(1), 13297, 2018.

43. Mahmoud A.H. Biosynthesis and characterization of some nanoparticles by using plant extracts and studying their antimicrobial property against pathogenic bacteria isolated from wounds and burns. Thesis University of Diyala. 2020.

44. Al-Khafaji O.A. Synthesis and studying characterization of ZnO nanostructures and its sensor Applications. Thesis Mustansiriyah University. 2015.

45. Senthilkumar S.R., Sivakumar T. Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. Int. J. Pharm. Pharm. Sci. 6(6), 461-5, 2014.

46. Renjusha S., Vaisakh P.H. Green synthesis and characterization of ZnO nanoparticles from leaf extracts of Barrintonia acutangula and its antibacterial activity. Rasayan J. Chem. 14(3), 1653-8, 2021.

47. Jalil M.B., Al Atbee M.Y. The prevalence of multiple drug resistance Escherichia coli and Klebsiella pneumoniae isolated from patients with urinary tract infections. J. Clin. Lab. Anal. 36(9), e24619, 1-7, 2022.

48. Abdelraheem W.M., Mohamed E.S. The effect of Zinc Oxide nanoparticles on Pseudomonas aeruginosa biofilm formation and virulence genes expression. J. Infect. Dev. Ctries. 15(06), 826-32, 2021.

49. Hassan F.J. Influence of Temperature and pH Values on Klebsiella pneumoniae Toxin-Antitoxin Gene Expression. Thesis Mustansiriyah University. 2024.

50. Pacios O., Blasco L., Bleriot I., Fernandez-Garcia L., Ambroa A., López M., Bou G., Cantón R., Garcia-Contreras R., Wood T.K., Tomás M. (p) ppGpp and its role in bacterial persistence: new challenges. Antimicrob. Agents Chemother. 64(10), 10-128, 2020.

51. Al Husseini L.B., Maleki A., Al Marjani M.F. Antisense mqsR-PNA as a putative target to the eradication of Pseudomonas aeruginosa persisters. New Microbes New Infec. 41,100868, 2021.

52. Narimisa N., Kalani B.S., Amraei F., Mohammadzadeh R., Mirkalantari S., Razavi S., Jazi F.M. Type II toxin/antitoxin system genes expression in persister cells of Klebsiella pneumoniae. Rev. Res. Med. Microb. 31(4), 215-20, 2020.

Downloads

Published

04-11-2025

How to Cite

[1]
Abood, S.H. et al. 2025. ZnO Nanoparticles Prepared by Hydrothermal Method and their Role on Gene Expression of TA System Type II Genes in Carbapenem-resistant Klebsiella pneumoniae . Pharmakeftiki . 37, 3 (Nov. 2025). DOI:https://doi.org/10.60988/p.v37i3.248.

Issue

Section

Research Articles