Formulation and evaluation of flunarizine-loaded spanlastic nanovesicles for treating migraine
DOI:
https://doi.org/10.60988/p.v37i2S.199Keywords:
flunarizine; spanlastic nanovesicles; edge activator; ethanol injection method; migraineAbstract
This study investigates the use of spanlastic nanovesicles in order to enhance the solubility and bioavailability of flunarizine. Flunarizine-loaded spanlastics were prepared using the ethanol injection method, and were subsequently evaluated for particle size, polydispersity index, zeta potential, entrapment efficiency, and deformability index. The optimized formulation exhibited a particle size of 185 nm, a polydispersity index of 0.2134, a zeta potential of -17 mV, an entrapment efficiency of 68.01%, and a relative deformability of 8.32 g. The findings support spanlastic nanovesicles as a viable delivery system for improving the solubility and enhancing the bioavailability of flunarizine.
References
1. Kassab H.J., Alkufi H.K., Hussein L.S. Use of factorial design in formulation and evaluation of intrarectal in situ gel of sumatriptan. J. Adv. Pharm. Technol. Res. 14(2), 119–124, 2023. DOI: 10.4103/japtr.japtr_603_22
2. Olesen J., Gustavsson A., Svensson M., Wittchen H.U., Jönsson B.; CDBE2010 study group; European Brain Council. The economic cost of brain disorders in Europe. Eur. J. Neurol. 19(1), 155–162, 2012. doi: 10.1111/j.1468-1331.2011.03590.x
3. Abd Alhammid S.N., Kassab H.J., Hussein L.S., Haiss M.A., Alkufi H.K. Spanlastics nanovesicles: an emerging and innovative approach for drug delivery. Maaen J. Med. Sci. 2(3), 100–107, 2023. DOI: 10.55810/2789-9136.1027
4. Kakkar S., Kaur I.P. Spanlastics -- a novel nanovesicular carrier system for ocular delivery. Int. J. Pharm. 413(1–2), 202–210, 2011. DOI: 10.1016/j.ijpharm.2011.04.027
5. Alkufi H.K., Kassab H.J. Soluplus-stabilized nimodipine-entrapped spanlastic formulations prepared with edge activator (Tween20): comparative physicochemical evaluation. Pharm. Nanotechnol. 13(3), 551–563, 2025. DOI: 10.2174/0122117385348551241028102256
6. Komaiko J., McClements D.J. Low-energy formation of edible nanoemulsions by spontaneous emulsification: factors influencing particle size. J. Food. Eng. 146, 122–128, 2015. DOI: 10.1016/j.jfoodeng.2014.09.003
7. Haiss M.A., Maraie N.K. Utilization of ultrasonication technique for the preparation of apigenin nanocrystals. Int. J. Drug Deliv. Technol. 11(3), 964–973, 2021. DOI: 10.25258/ijddt.11.3.53
8. Salama H.A., Mahmoud A.A., Kamel A.O., Abdel Hady M., Awad G.A. Brain delivery of olanzapine by intranasal administration of transfersomal vesicles. J. Liposome Res. 22(4), 336–345, 2012. DOI: 10.3109/08982104.2012.700460
9. Yassin G.E., Amer R.I., Fayez A.M. Carbamazepine loaded vesicular structures for enhanced brain targeting via intranasal route: optimization, in vitro evaluation, and in vivo study. Int. J. Appl. Pharm. 11(4), 264–274, 2019. DOI: 10.22159/ijap.2019v11i4.33474