The effect of a combination of Andrographis paniculata extract, Nigella sativa, and propolis as immunomodulators on the immune response in rats infected with Mycobacterium tuberculosis

Authors

  • Asarini Asarini Department of Pharmacy, Faculty of Health Sciences, Universitas Esa Unggul, Jakarta, Indonesia; Doctoral Program Faculty of Pharmacy, Universitas Pancasila, Jakarta, Indonesia
  • Syamsudin Abdillah Faculty of Pharmacy Universitas Pancasila, Jakarta, Indonesia
  • Yulvian Sani Badan Riset dan Inovasi Nasional, Jakarta, Indonesia
  • Gemini Alam Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
  • Greesty Finotory Swandiny Faculty of Pharmacy Universitas Pancasila, Jakarta, Indonesia

DOI:

https://doi.org/10.60988/p.v37i4.106

Keywords:

Andrographis paniculata, Immunomodulator, Mycobacterium tuberculosis, Nigella sativa, Propolis

Abstract

A combination of Nigella sativa, Andrographis paniculata, and propolis extracts was investigated for its immunomodulatory effects on rats infected with Mycobacterium tuberculosis. To evaluate the immunomodulatory potential of active compounds in silico, assess their ability to inhibit bacterial growth in vitro, determine an effective dose, and analyze their impact on organ health in infected rats. This study involves several tests, including in silico testing using the Molegro Virtual Docker application, in vitro testing to analyze the potential of the extract against bacterial growth in MODS medium, as well as in vivo testing which includes measurement of body weight in rats, white and red blood cell counts, IL-6 and IL-10 examination using ELISA, multiplex PCR test for Mycobacterium species, and histopathological examination of the spleen, lungs, and liver. Molecular docking showed strong receptor binding for andrographolide (-63.66 kcal/mol), thymoquinone (-61.72 kcal/mol), and quercetin (-59.88 kcal/mol). In vitro, the extracts inhibited M. tuberculosis growth at concentrations below 25.5 mg/ml. In vivo, the combination extract (450 mg/kg body weight) improved blood parameters, reduced IL-6 and IL-10 levels, and mitigated histopathological damage in the lungs, spleen, and liver. The combination extract of formula C (a combination of Nigella sativa, Andrographis paniculata, and propolis extracts) at a dose of 450 mg/kg body weight has the potential to exhibit the best activity as an immunomodulator and anti-tuberculosis agent in this study. Further research may validate its therapeutic application.

References

Prasad M.S., Bhole R.P., Khedekar P.B., Chikhale R.V. Mycobacterium enoyl acyl carrier protein reductase (InhA): a key target for antitubercular drug discovery. Bioorganic Chem. 115, 105242, 2021.

Daniel T.M. The history of tuberculosis. Respir. Med. 100, 1862-70, 2006.

Sandhu G.K. Tuberculosis: current situation, challenges and overview of its control programs in India. J. Glob. Infect. Dis. 3, 143-50, 2011.

World Health Organization. (2022). Global tuberculosis report 2022. Geneva, World Health Organization.

Kemkes. (2023). Yogyakarta P 5th ITIRM. Jakarta, Kemkes RI.

Fatima S., Bhaskar A., Dwivedi V.P. Repurposing immunomodulatory drugs to combat tuberculosis. Front. Immunol. 12, 645485, 2021.

Etna M.P., Giacomini E., Severa M., Coccia E.M. Pro- and anti-inflammatory cytokines in tuberculosis: a two-edged sword in tb pathogenesis. Semin. Immunol. 26, 543-51, 2014.

Ryan K.J. Immune Response to Infection. In: Ryan K.J. ed. Sherris & Ryan’s medical microbiology. 8th ed. New York, NY, McGraw-Hill Education, 2022.

Jayakumar T., Hsieh C.Y., Lee J.J., Sheu J.R. Experimental and clinical pharmacology of Andrographis paniculata and its major bioactive phytoconstituent andrographolide. Evid. Based. Complement. Alternat. Med. 2013, 846740, 2013.

Chauhan E.S., Sharma K., Bist R. Andrographis paniculata : a review of its phytochemistry and pharmacological activities. Res. J. Pharm. Technol. 12, 891-900, 2019.

Joselin J., Jeeva S. Andrographis paniculata: a review of its traditional uses, phytochemistry and pharmacology. Med. Aromat. Plants. 3, 1000169, 2014.

Sianipar E.A. The potential of Indonesian traditional herbal medicine as immunomodulatory agents: a review. Int. J. Pharm. Sci. Res. 12, 5229, 2021.

Kooti W., Hasanzadeh-Noohi Z., Sharafi-Ahvazi N., Asadi-Samani M., Ashtary-Larky D. Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa). Chin. J. Nat. Med. 14, 732-45, 2016.

Mahmud H.A., Seo H., Kim S., Islam M.I., Nam K.W., Cho H.D., et al. Thymoquinone (TQ) inhibits the replication of intracellular Mycobacterium tuberculosis in macrophages and modulates nitric oxide production. BMC Complement. Altern. Med. 17, 279, 2017.

Datta A.K., Saha A., Bhattacharya A., Mandal A., Paul R., Sengupta S. Black cumin (Nigella sativa L.)–a review. J. Plant Dev. Sci. 4, 1-43, 2012.

Halim E., Hardinsyah H., Sutandyo N., Sulaeman A., Artika M., Harahap Y. Kajian bioaktif dan zat gizi propolis Indonesia dan Brasil. J. Gizi Pangan. 7, 1-7, 2012.

Nugroho Y.S., Reviono R., Suradi S., Prasetyo D.H. Effect of andrographolide on the expression of TNF-α and pulmonary tuberculosis in rats granulomas are infected with Mycobacterium tuberculosis. J. Respirologi Indones. 38, 75-82, 2018.

Oktaviani D.J., Widiyastuti S., Maharani D.A., Amalia A.N., Ishak A.M., Zuhrotun A. Review artikel: farmakoterapi dan rehabilitasi psikososial. Farmaka. 18, 1-15, 2020.

He W., Sun J., Zhang Q., Li Y., Fu Y., Zheng Y., et al. Andrographolide exerts anti-inflammatory effects in Mycobacterium tuberculosis-infected macrophages by regulating the Notch1/Akt/NF-κB axis. J. Leukoc. Biol. 108, 1747-64, 2020.

Wang W., Wang J., Dong S.F., Liu C.H., Italiani P., Sun S.H., et al. Immunomodulatory activity of andrographolide on macrophage activation and specific antibody response. Acta Pharmacol. Sin. 31, 191-201, 2010.

Majdalawieh A.F., Fayyad M.W. Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone: a comprehensive review. Int. Immunopharmacol. 28, 295-304, 2015.

Badary O.A., Hamza M.S., Tikamdas R. Thymoquinone: a promising natural compound with potential benefits for COVID-19 prevention and cure. Drug Des. Devel. Ther. 15, 1819-33, 2021.

Kanaç S., Keskin E., Uluışık D. Effects of thymoquinone on some cytokine levels in cerulein-induced acute pancreatitis. J. Adv. VetBio. Sci. Tech. 7, 194-201, 2022.

Olivianto E., Endharti A.T., Santoso S., Handono K., Kusuma H.C. Thymoquinone Inhibit M2 macrophage polarization in rat infected with Mycobacterium tuberculosis. Ann. Romanian Soc. Cell Biol. 25, 13635-44, 2021.

Majdalawieh A.F., Hmaidan R., Carr R.I. Nigella sativa modulates splenocyte proliferation, Th1/Th2 cytokine profile, macrophage function and NK anti-tumor activity. J. Ethnopharmacol. 131, 268-75, 2010.

Harbone J.B. (2006). Metode fitokimia, penuntun cara modern menganalisis tumbuhan. 2nd ed. Bandung, Penerbit ITB.

Kusumo D.W., Susanti S., Ningrum E.K. Skrining fitokimia senyawa metabolit sekunder pada ekstrak etanol bunga pepaya (Carica papaya L.). JCPS J. Curr. Pharm. Sci. 5, 478-83, 2022.

Brady M.F., Coronel J., Gilman R.H., Moore D.A. The MODS method for diagnosis of tuberculosis and multidrug resistant tuberculosis. J. Vis. Exp. JoVE. 18, 845, 2008.

R&D Systems. (2025). Rat IL-6 Quantikine ELISA Kit - Rat IL-6 immunoassay. Minneapolis, MN, R&D Systems.

R&D Systems. (2025). Rat IL-10 Quantikine ELISA kit - Rat IL-10 immunoassay. Minneapolis, MN, R&D Systems.

Chae H., Han S.J., Kim S.Y., Ki C.S., Huh H.J., Yong D., et al. Development of a one-step multiplex PCR assay for differential detection of

major Mycobacterium species. J. Clin. Microbiol. 55, 2736-51, 2017.

Jantan I., Ahmad W., Bukhari S.N.A. Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials. Front Plant Sci. 6, 2015.

Zaidan S., Abdillah S., Rahmat D., Djamil R., Mumpuni E. Aktivitas senyawa Sargassum sp. sebagai anti-aterosklerosis dengan pembandingan ligan-reseptor HMG-CoA reduktase- simvastatin (1HW9) dan uji toksisitas secara in-silico. J. Ilmu Kefarmasian Indones. 17,

-5, 2019.

Kesuma D., Siswandono S., Purwanto B.T., Hardjono S. Uji in silico aktivitas sitotoksik dan toksisitas senyawa turunan N-(Benzoil)-N’- feniltiourea sebagai calon obat antikanker. J. Pharm. Sci. Clin. Res. 3, 1-11, 2018.

Campo M., Heater S., Peterson G.J., Simmons J.D., Skerrett S.J., Mayanja-Kizza H., et al. HDAC3 inhibitor RGFP966 controls bacterial growth and modulates macrophage signaling during Mycobacterium tuberculosis infection. Tuberculosis. 127, 102062, 2021.

Kumbhar N., Nimal S., Barale S., Kamble S., Bavi R., Sonawane K., et al. Identification of novel leads as potent inhibitors of HDAC3 using ligand-based pharmacophore modeling and MD simulation. Sci. Rep. 12, 1712, 2022.

Kim M., Na W., Sohn C. Vitamin K1 (phylloquinone) and K2 (menaquinone-4) supplementation improves bone formation in a high-fat diet-induced obese mice. J. Clin. Biochem. Nutr. 53, 108-13, 2013.

Alva A., Aquino F., Gilman R.H., Olivares C., Requena D., Gutiérrez A.H., et al. Morphological characterization of Mycobacterium tuberculosis in a MODS culture for an automatic diagnostics through pattern recognition. Plos One. 8, e82809, 2013.

Ladda P., Magnum C.S., Naikwade N.S. New diagostic methods of tuberculosis: feasibility ad applicability in the field. Pharmacologyonline. 2, 601-28, 2010.

Nikonenko B.V., Samala R., Einck L., Nacy C.A. Rapid, Simple in vivo screen for new drugs active against Mycobacterium tuberculosis. Antimicrob. Agents. Chemother. 48, 4550-5, 2004.

Major S., Turner J., Beamer G. Tuberculosis in CBA/J mice. Vet. Pathol. 50, 1016-21, 2013.

Barrett K.E., Barman S.M., Boitano S., Reckelhoff J.F. Chapter 3: Immunity, infection, & inflammation. In: Ganong’s medical physiology

examination & board review. 2nd ed. USA, McGraw Hill, 2019, p. 189-95.

Faquin W., Schneider T., Goldberg M. Effect of inflammatory cytokines on hypoxia-induced erythropoietin production. Blood. 79, 1987-94, 1992.

Standiford T.J., Huffnagle G.B. Pulmonary clearance of infectious agents. In: Grippi M.A., Antin-Ozerkis D.E., Dela Cruz C.S., Kotloff R.M., Kotton C.N., Pack A.I. eds. Fishman’s Pulmonary Diseases and Disorders. 6th ed. New York, NY, McGraw-Hill Education, 2023.

Beutler B., Moresco E.M.Y. Innate immunity. In: Kaushansky K., Prchal J.T., Burns L.J., Lichtman M.A., Levi M., Linch D.C. eds. Williams hematology. 10th ed. New York, NY, McGraw-Hill Education, 2021.

Martinez F.O., Sica A., Mantovani A., Locati M. Macrophage activation and polarization. Front Biosci. J. Virtual Libr. 13, 453-61, 2008.

Salem M.L. Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. Int. Immunopharmacol. 5, 1749-70, 2005.

Wolska K., Górska A., Antosik K., Ługowska K. Immunomodulatory effects of propolis and its components on basic immune cell functions. Indian J. Pharm. Sci. 81, 575-88, 2019.

Bachrach B.S., Bachrach D.S. (2022). The Saxon war. Washington, D.C., Catholic University of America Press.

Lee J.Y., Lee K.S., Jung K.J., Han J., Kwon O.J., Kim J., et al. Pulmonary tuberculosis: CT and Pathologic Correlation. J. Comput. Assist. Tomogr. 24, 691-8, 2000.

Linge I., Dyatlov A., Kondratieva E., Avdienko V., Apt A., Kondratieva T. B-lymphocytes forming follicle-like structures in the lung tissue of tuberculosis-infected mice: dynamics, phenotypes and functional activity. Tuberculosis. 102, 16-23, 2017.

Henry P.H. Enlargement of lymph nodes and spleen. In: Harrison’s principles of internal medicine. USA, McGraw-Hill Professional, 2012, p. 1-13.

Chin-Hong P., Joyce E.A., Karandikar M., Matloubian M., Rubio L.A., Schwartz B.S., et al. Innate immunity. In: Levinson’s review of medical microbiology & immunology, a guide to clinical infectious diseases. 18th Edition. New York, NY, McGraw Hill, 2024.

Hammer G.D., McPhee S.J., Education M.H. (2024). Pathophysiology of disease: an introduction to clinical medicine. New York, McGraw-Hill Education Medical.

Downloads

Published

27-01-2026

How to Cite

[1]
Asarini, A. et al. 2026. The effect of a combination of Andrographis paniculata extract, Nigella sativa, and propolis as immunomodulators on the immune response in rats infected with Mycobacterium tuberculosis . Pharmakeftiki . 37, 4 (Jan. 2026). DOI:https://doi.org/10.60988/p.v37i4.106.

Issue

Section

Research Articles