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Beyond conventional small-molecule inhibitors, proteolysis-target-
ing chimeras (PROTACs) represent a novel therapeutic strategy for 
targeted protein degradation. These heterobifunctional molecules 
are engineered in order to recruit an E3 ubiquitin ligase to a specific 
protein of interest, thereby facilitating its ubiquitination and subse-
quent degradation by the proteasome. This approach has garnered 
significant attention due to its ability to target proteins traditionally 
considered “undruggable”, including those lacking enzymatic activity 
or accessible binding pockets. This mini-review outlines the mecha-
nistic basis of PROTACs, key design principles, and recent advances 
in the field. Particular emphasis is placed on the potential of PRO-
TACs to address persistent challenges in drug discovery, notably the 
need for selective elimination of pathogenic proteins. The review 
also explores strategies for optimizing PROTAC-based therapies and 
discusses current limitations, such as pharmacokinetic constraints 
and the need for improved E3 ligase engagement. Owing to their dis-
tinctive mode of action and expanding therapeutic scope, PROTACs 
hold promise for transforming the treatment landscape of cancer, 
neurological disorders, and other diseases driven by aberrant pro-
tein expression.

ABSTRACT

1. Introduction

Proteolysis-targeting chimeras 
(PROTACs) represent a novel ther-
apeutic modality that harnesses 

the ubiquitin–proteasome system 
(UPS) in order to selectively mark 
intracellular proteins for degrada-
tion. Physiologically, the UPS elimi-
nates misfolded, mutated, or other-
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wise deleterious proteins from the cellular environ-
ment; PROTACs exploit this endogenous degradation 
machinery so as to direct the removal of specific pro-
teins of interest1.

Compared to conventional small-molecule inhibi-
tors (SMIs), PROTACs offer several advantages. First-
ly, PROTACs can induce the degradation of a wide ar-
ray of target proteins, often requiring lower concen-
trations than SMIs to achieve therapeutic efficacy, 
thereby potentially reducing SMI-associated toxicity. 
Secondly, PROTACs can engage proteins traditional-
ly considered “undruggable”, such as those lacking 
enzymatic activity or accessible binding pockets. 
Thirdly, PROTAC-based therapies may overcome 
drug resistance arising from mutations in the tar-
get protein. Fourthly, PROTACs can counteract SMI 
resistance due to target upregulation by promoting 
auto-degradation of the target protein itself2. Finally, 
PROTACs may enhance drug selectivity and specific-
ity; for instance, non-selective inhibitors have been 
converted into selective degraders through PRO-
TAC-mediated targeting, offering promising avenues 
for the rational design of selective SMIs3.

The therapeutic potential of PROTACs is particu-
larly compelling in the context of neurodegenerative 
diseases, where protein-specific degradation is crit-
ical. Aging is a major risk factor for these disorders, 
with Alzheimer disease being the most prevalent. 
In this condition, aggregation of tau and β-amyloid 
proteins initiates and sustains neurodegeneration. 
Parkinson disease, another common neurodegen-
erative disorder, is associated with the progressive 
loss of dopaminergic neurons. Huntington disease, 
although less frequent, belongs to a group of genet-
ically determined disorders characterized by irre-
versible deposition of misfolded huntingtin protein4.

Importantly, tumour development is often accom-
panied by aberrant protein synthesis, providing a 
rationale for PROTAC-based interventions. Current 
targets include tumour expansion factors, which can 
be effectively inhibited via PROTAC-mediated deg-
radation. Oncogenes and tumour suppressor genes 
also represent viable targets, where selective pro-
tein degradation may significantly impede tumour 
progression5.

2. Strategies of developing PROTACs

The first PROTAC prototype, Protac-1, was intro-
duced in 2001. This molecule validated the concept 
that engineered compounds could selectively bind 
and degrade cellular proteins via the UPS. Protac-1 
was designed to target methionyl aminopeptidase 
2; a protein implicated in angiogenesis and various 
pathophysiological processes, including oncogene-
sis. In 2003, the same research group developed a 
PROTAC incorporating oestradiol, an oestrogen de-
rivative, to induce the degradation of oestrogen re-
ceptor alpha, which promotes the growth of certain 
breast carcinoma cells upon oestrogen activation. 
They also constructed a PROTAC containing dihy-
drotestosterone in order to target the androgen re-
ceptor, which is known to drive proliferation in pros-
tate cancer cell lines following androgen stimulation.

A critical consideration in PROTAC design is the 
linker connecting the ligand for the protein of inter-
est and the ligand for the E3 ubiquitin ligase. Both 
linker length and composition are pivotal for ternary 
complex formation. If the linker is too short, steric 
hindrance may prevent simultaneous binding to 
both targets. Conversely, an excessively long linker 
may impair the spatial proximity required for effi-
cient ubiquitination. Current structural optimization 
efforts focus on the structure-activity relationship 
analyses across various linker lengths, typically 
beginning with longer variants and systematically 
shortening them until activity is lost6.

Traditional small-molecule PROTACs often exhibit 
poor pharmacokinetic profiles and lack cell or tissue 
selectivity, potentially leading to systemic toxicity. 
Recent advances in ligand modification have yield-
ed tumour-targeted PROTACs, including conjugates 
with folate, antibodies, and aptamers. These modi-
fied PROTACs demonstrate enhanced tumour accu-
mulation, improved antitumor efficacy in vivo, and 
increased cellular uptake.

2.1. Aptamer-based PROTACs

Aptamers are single-stranded DNA or RNA oligonu-
cleotides comprising fewer than 100 nucleotides. 
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They exhibit high affinity and specificity, low toxici-
ty, superior tissue penetration, ease of chemical syn-
thesis, and notable stability, making them attractive 
candidates for targeted PROTAC delivery.

2.2. Pre-PROTACs

Pre-PROTACs are pharmacologically redesigned 
agents that become activated upon specific molec-
ular triggers within designated signalling pathways. 
These constructs aim at reducing systemic toxicity 
while preserving therapeutic potency. Reactive oxy-
gen species play a key role in modulating the activa-
tion cascades of these compounds7.

2.3. Reactive-triggered (RT)-PROTACs

RT-PROTACs are designed to mitigate systemic toxic-
ity associated with conventional PROTACs, by mini-
mizing off-target protein degradation8.

2.4. POLY-PROTACs

POLY-PROTAC 13 comprises a ligand for von Hippel–
Lindau and a ligand for bromodomain-containing 
protein 4, connected via tunable linkers. Its advan-
tages include: (i) activation by multiple stimuli, lead-
ing to enhanced tumour accumulation, improved 

protein degradation, and deeper tumour penetra-
tion; (ii) tumour-specific delivery; and (iii) compati-
bility with photodynamic therapy9.

3. Conclusion

PROTACs have emerged as a transformative platform 
within the UPS framework, offering unprecedented 
precision in protein-selective targeting. Their capac-
ity to dismantle neoplastic processes, circumvent 
resistance mechanisms, and enhance therapeutic ef-
ficacy and specificity positions them as a promising 
frontier in drug discovery.
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