Μηχανιστική Συσχέτιση μεταξύ της Σκλήρυνσης Κατά Πλάκας και Παραγόντων της Παχυσαρκίας. Η Εμπλοκή των Αντιοξειδωτικών
DOI:
https://doi.org/10.60988/p.v37i1.81Keywords:
Multiple Sclerosis, Obesity, Adipokines, Antioxidant compoundsAbstract
Η σκλήρυνση κατά πλάκας (ΣΚΠ) αποτελεί μία ευρέως διαδεδομένη νευροεκφυλιστική νόσο, που προσβάλλει άτομα νέας και μέσης ηλικίας, με κλινικά συμπτώματα, που εμπλέκουν όλο το αισθητηριακό, κινητικό και νοητικό φάσμα. Η ΣΚΠ σχετίζεται με φλεγμονώδεις και οξειδωτικές διεργασίες, στο Κεντρικό Νευρικό Σύστημα, αλλά και περιφερικά επί της συστηματικής κυκλοφορίας, με συμμετοχή πλήθους κυτοκινών και κυτταρων του ανοσοποιητικού. Αντίστοιχα, η παχυσαρκία, αποτελεί μεταβολική νόσο με πολλές μηχανιστικές προεκτάσεις, σε επίπεδο αυξημένου οξειδωτικού stress, φλεγμονής, ορμονικής και μεταβολικής δραστηριότητας του λιπώδους ιστού. Παχυσαρκία και ΣΚΠ δείχνουν να μοιράζονται κοινούς μηχανισμούς προαγωγής τους, που σχετίζονται με τη φλεγμονή, την ανισορροπία σε οξειδωτικό επίπεδο και την λειτουργία των αδιποκινών. Η παρούσα ανασκόπηση στοχεύει να αναδείξει την επίδραση της παχυσαρκίας και των εκκρινόμενων από το λιπώδη ιστό αδιποκινών στην εκδήλωση και εξέλιξη της ΣΚΠ, κύρια σε επίπεδο μηχανιστικό αλλά και σε κλινικό. Ακόμα, λόγω της φύσης της ΣΚΠ, αντιοξειδωτικά στοιχεία και ενώσεις, φυσικές ή μη, προερχόμενες από τη διατροφή, θα μπορούσαν, χάρη στον πολυλειτουργικό τους ρόλο να παρέμβουν θετικά επί αυτής, επεμβαίνοντας και σε μονοπάτια που σχετίζονται και αλλοιώνονται από τη παχυσαρκία και τα οποία εμπλέκονται γενικότερα στην εκδήλωση βιολογικού stress, ανεξαρτήτως του παράγοντα πρόκλησης τους. Παραδείγματα τέτοιων ουσίων θα περιγραφούν, με τους μηχανισμούς εμπλοκής τους στη ΣΚΠ, με σκοπό να διαφανεί η πιθανή συμβολή τους, ως συστατικά συμπληρωμάτων, στην επικουρική αντιμετώπιση της νόσου, τονίζοντας παράλληλα το ρόλο της διατροφής, και του εντερικού μικροβιώματος.
References
The Multiple Sclerosis International Federation. Atlas of MS, 3rd Edn, September 2020. PART 1: Mapping multiple sclerosis around the world key epidemiology findings. Available from Internet: https://www.msif.org/wp-content/uploads/2020/12/Atlas-3rd-Edition-Epidemiology-report-EN-updated-30-9-20.pdf
Vorobeychik G., Cooper P., Cox A. Multiple sclerosis and related chanllenges to young women’s health: Canadian experert review. Neurodegener. Dis. Manag. 10, 1-13, 2020.
Walton C., King R., Rechtman L., Kaye W., Leray E., Marrie R.A., et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult. Scler. 26, 1816–1821, 2020.
Compston A., Coles A. Multiple sclerosis. Lancet 372, 1502–1517, 2008.
Ghasemi N., Razavi S., Nikzad E. Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy. Cell J. 19, 1–10, 2017.
Lublin F. D., Reingold S.C., Cohen J.A., Cutter G.R., Thompson A. J., Wolinsky J. S., et al. Defining the clinical course of multiple sclerosis. Neurology 83, 278–286, 2013.
Varra F.N., Varras M., Varra V.K., Theodosis-Nobelos P. Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation-mediating treatment options. Mol. Med. Rep. 29, 95, 2024.
Varra F.N., Gkouzgos S., Varras M., Theodosis-Nobelos P. Efficacy of antioxidant compounds in obesity and its associated comorbidities. Pharmakeftiki 36, 2–19, 2024.
Schreiner T.G., Genes T.M. Obesity and multiple sclerosis-A multifaceted association. J. Clin. Med.10, 2689, 2021.
Theodosis-Nobelos P., Kokkinos S., Triantis C. Diabetes in Alzheimer disease Interaction at mechanistic and therapeutic level. Pharmakeftiki 34, 103–117, 2022.
Bagur M.J., Murcia M.A., Jiménez-Monreal A.M., Tur J.A., Bibiloni M.M., Alonso G.L., Martínez-Tomé M. Influence of diet in multiple sclerosis: A systematic review. Adv. Nutr. 8, 463–472, 2017.
Filippi M., Bar-Or A., Piehl F., Preziosa P., Solari A., Vukusic S. Rocca M.A. Multiple sclerosis. Nat. Rev. Dis. Primers 4, 43, 2018.
Murúa S.R., Farez M.F., Francisco J Quintana F.J. The Immune response in multiple sclerosis. Annu. Rev. Pathol. 17, 121-139, 2022.
Filippatou, A., Lambe, J., Sotirchos, E., Fitzgerald, K., Aston, A., Murphy, O., et al. Association of body mass index with longitudinal rates of retinal atrophy in multiple sclerosis. Mult. Scler. 26, 843–854, 2020.
Riccio P. The molecular basis of nutritional intervention in multiple sclerosis: a narrative review. Complement Ther. Med. 19, 228–237, 2011.
Esposito S., Bonavita S., Sparaco M., Gallo A., Tedeschi G. The role of diet in multiple sclerosis: A review. Nutr. Neurosci. 21, 377–39, 2018.
Stoiloudis P., Kesidou E., Bakirtzis C., Sintila S.A., Konstantinidou N., Marina Boziki M., Grigoriadis N. The role of diet and interventions on multiple sclerosis: A review. Nutrients 14, 1150, 2022.
Stampanoni Bassi M., Iezzi E., Buttari F., Gilio L., Simonelli I., Carbone F., et al. Obesity worsens central inflammation and disability in multiple sclerosis. Mult. Scler. 26, 1237–1246, 2019.
Fitzgerald K., Salter A., Tyry T., Fox R., Cutter G., Marrie R. Measures of general and abdominal obesity and disability severity in a large population of people with multiple sclerosis. Mult. Scler. 26, 976–986, 2020.
Lutfullin I., Eveslage M., Bittner S., Antony G., Flaskamp M., Luessi F., et al. Association of obesity with disease outcome in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 94, 57–61, 2022.
Manuel Escobar J., Cortese M., Edan G., Freedman M., Hartung H., Montalbán X., et al. Body mass index as a predictor of MS activity and progression among participants in BENEFIT. Mult. Scler. 28, 1277–1285, 2022.
Giovannoni G. The neurodegenerative prodrome in multiple sclerosis. Lancet Neurol. 16, 413–414, 2017.
Oreja-Guevara C., Ramos-Cejudo J., Aroeira L.S., Chamorro B., Diez-Tejedor E. TH1/TH2 Cytokine profile in relapsing-remitting multiple sclerosis patients treated with Glatiramer acetate or Natalizumab. BMC Neurol. 12, 95, 2012.
Disanto G., Morahan J.M., Barnett M.H., Giovannoni G., Ramagopalan S.V. The evidence for a role of B cells in multiple sclerosis. Neurology 78, 823-832, 2012.
Pham D.V., Nguyen T.K., Park P.H. Adipokines at the crossroads of obesity and mesenchymal stem cell therapy. Exp Mol Med. 55, 313-324, 2023.
Keyhanian, K., Saxena, S., Gombolay, G., Healy, B.C., Misra, M., Chitnis, T. Adipokines are associated with pediatric multiple sclerosis risk and course. Mult. Scler. Relat. Disord. 36, 101384, 2019.
Matarese G., Carrieri, P.B., Montella, S., De Rosa, V., La Cava, A. Leptin as a metabolic link to multiple sclerosis. Nat. Rev. Neurol. 6, 455–461, 2010.
Evangelopoulos M.E., Koutsis G., Markianos M. Serum leptin levels in treatment-naive patients with clinically isolated syndrome or relapsing-remitting multiple sclerosis. Autoimmune Dis. 2014, 486282, 2014.
Yousefian M., Nemati R., Daryabor G., Gholijani N., Nikseresht A., Borhani-Haghighi A., Kamali-Sarvestani E. Gender-specific association of leptin and adiponectin genes with multiple sclerosis. Am. J. Med. Sci. 356, 159–167, 2018.
Hsuchou H., Mishra P.K., Kastin, A.J., Wu X., Wang Y., Ouyang S., Pan W. Saturable leptin transport across the BBB persists in EAE mice. J. Mol. Neurosci. 51, 364–370, 2013.
Ouyang S., Hsuchou H., Kastin A.J., Mishra P.K., Wang Y., Pan W. Leukocyte infiltration into spinal cord of EAE mice is attenuated by removal of endothelial leptin signaling. Brain Behav. Immun. 40, 61–73, 2014.
Frisullo G., Mirabella M., Angelucci F., Caggiula M., Morosetti R., Sancricca C., et al. The effect of disease activity on leptin, leptin receptor and suppressor of cytokine signalling-3 expression in relapsing-remitting multiple sclerosis. J. Neuroimmunol. 192, 174–183, 2007.
Lock C., Hermans G., Pedotti R., Brendolan A., Schadt E., Garren H., et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med. 8, 500–508, 2002.
Batocchi A.P., Rotondi M., Caggiula M., et al. Leptin as a marker of multiple sclerosis activity in patients treated with interferon-beta. J. Neuroimmunol. 139, 150–154, 2003.
Kvistad S.S., Myhr K.M., Holmøy T., Benth J.Š., Wergeland S., Beiske A.G., Bjerve K.S., Hovdal H., Midgard R., Sagen J.V., et al. Serum levels of leptin and adiponectin are not associated with disease activity or treatment response in multiple sclerosis. J. Neuroimmunol. 323, 73–77, 2018.
Piccio L., Cantoni C., Henderson J.G., Hawiger D., Ramsbottom M., Mikesell R., Ryu J., Hsieh C.S., Cremasco, V., Haynes W., et al. Lack of adiponectin leads to increased lymphocyte activation and increased disease severity in a mouse model of multiple sclerosis. Eur. J. Immunol. 43, 2089–2100, 2013.
Kraszula L., Jasińska A., Eusebio M.O., Kuna P., Głąbiński A., Pietruczuk M. Evaluation of the relationship between leptin, resistin, adiponectin and natural regulatory T cells in relapsing-remitting multiple sclerosis. Neurol. Neurochir. Pol. 46, 22-8, 2012.
Signoriello E., Lus G., Polito R., Casertano S., Scudiero O., Coletta M., Monaco M.L., Rossi F., Nigro E., Daniele A. Adiponectin profile at baseline is correlated to progression and severity of multiple sclerosis. Eur. J. Neurol. 26, 348–355, 2019.
Badoer E., Kosari S., Stebbing M.J. Resistin, an adipokine with non-generalized actions on sympathetic nerve activity. Front. Physiol. 6, 321, 2015.
Emamgholipour S., Eshaghi S.M., Hossein-nezhad A., Mirzaei K., Maghbooli Z., Sahraian M.A. Adipocytokine profile, cytokine levels and Foxp3 expression in multiple sclerosis: a possible link to susceptibility and clinical course of disease. PLoS ONE 8, e76555, 2013.
Hossein-Nezhad A., Varzaneh F.N., Mirzaei K., Emamgholipour S., Varzaneh F.N., Sahraian M.A. A polymorphism in the resistin gene promoter and the risk of multiple sclerosis. Minerva Med. 104, 431–438, 2013.
Samara A., Cantoni C., Laura Piccio L., Cross A.H., Chahin S.. Obesity, gut microbiota, and multiple sclerosis: Unraveling the connection. Mult. Scler. Relat. Disord. 76, 104768, 2023.
Sakaguchi S., Yamaguchi T., Nomura T., Ono M. Regulatory T cells and immune tolerance. Cell 133, 775–787, 2008.
Ivanov I.I., Atarashi K., Manel N., Brodie E.L., Shima T., Karaoz U., et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498, 2009.
Cosorich I., Dalla-Costa G., Sorini C., Ferrarese R., Messina M.J., Dolpady J., et al. High frequency of intestinal T(H)17 cells correlates with microbiota alterations and disease activity in multiple sclerosis. Sci. Adv. 3, e1700492, 2017.
Lee Y.K., Menezes J.S., Umesaki Y., Mazmanian S.K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. U. S. A. 108, 4615–4622, 2011.
Buscarinu M.C., Cerasoli B., Annibali V., Policano C., Lionetto L., Capi M., et al. Altered intestinal permeability in patients with relapsing-remitting multiple sclerosis: A pilot study. Mult. Scler. 23, 442–446, 2017.
Jangi S., Gandhi R., Cox L.M., Li N., von Glehn F., Yan R., et al. Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun. 7, 12015, 2016.
Tremlett H., Bauer K.C., Appel-Cresswell S., Finlay B.B., Waubant E. The gut microbiome in human neurological disease: A review. Ann. Neurol. 81, 369–382, 2017.
Cekanaviciute E., Yoo B.B., Runia T.F., Debelius J.W., Singh S., Nelson C.A., et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc. Natl. Acad. Sci. U. S. A. 114, 10713–10718, 2017.
Giles G.I., Nasim M.J., Ali W., Jacob C. The Reactive Sulfur Species Concept: 15 Years On. Antioxidants 6, 38, 2017.
Theodosis-Nobelos P., Marc G., Rekka E.A. Design, Synthesis and Evaluation of Antioxidant and NSAID Derivatives with Antioxidant, Anti-Inflammatory and Plasma Lipid Lowering Effects. Molecules, 29, 1016, 2024.
Burton G.J., Jauniaux E. Oxidative stress. Best Pract Res Clin Obstet Gynaecol. 25, 287-299, 2011.
Theodosis-Nobelos P., Rekka, E.A. The Antioxidant Potential of Vitamins and Their Implication in Metabolic Abnormalities. Nutrients 16, 2740, 2024.
Theodosis-Nobelos P., Rekka E.A. The multiple sclerosis modulatory potential of natural multi-targeting antioxidants. Molecules 27, 8402, 2022.
Miller E.D., Dziedzic A., Saluk-Bijak J., Bijak, M. A Review of various antioxidant compounds and their potential utility as complementary therapy in multiple sclerosis. Nutrients 11, 1528, 2019.
Xie L., Li X.K., Takahara S. Curcumin has bright prospects for the treatment of multiple sclerosis. Int. Immunopharmacol.11, 323-330, 2011.
Wu S., Guo T., Qi W., Li Y., Gu J., Liu C., et al. Curcumin ameliorates ischemic stroke injury in rats by protecting the integrity of the blood-brain barrier. Exp. Ther. Med. 22, 783, 2021.
Liu S., Liu J., He L., Liu L., Cheng B., Fangliang Zhou F., Cao D., He Y. A Comprehensive review on the benefits and problems of curcumin with respect to human health. Molecules 27, 4400, 2022.
Natarajan C., Bright J.J. Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus Kinase-STAT pathway in T lymphocytes. J. Immunol. 169, 6506–6513, 2002.
Xie L., Li, X.K., Funeshima-Fuji N., Kimura H., Matsumoto Y., Isaka Y., Takahara S. Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. Int. Immunopharmacol. 9, 575–581, 2009.
Mohajeri M., Sadeghizadeh M., Najafi F., Javan M. Polymerized nano-curcumin attenuates neurological symptoms in EAE model of multiple sclerosis through down regulation of inflammatory and oxidative processes and enhancing neuroprotection and myelin repair. Neuropharmacol. 99, 156–167, 2015.
Singh N.P., Hegde V.L., Hofseth L.J., Nagarkatti M., Nagarkatti P. Resveratrol (trans-3,5,4'-trihydroxystilbene) ameliorates experimental allergic encephalomyelitis, primarily via induction of apoptosis in T cells involving activation of aryl hydrocarbon receptor and estrogen receptor. Mol. Pharmacol. 72, 1508-21, 2007.
Shindler K.S., Ventura E., Dutt M., Elliott P., Fitzgerald D.C., Rostami A. Oral resveratrol reduces neuronal damage in a model of multiple sclerosis. J. Neuroophthalmol. 30, 328–339, 2010.
Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: an overview. J. Nutr. Sci. 2016; 5: e47.
Leyva-López N., Gutierrez-Grijalva E.P., Ambriz-Perez D.L., Heredia J.B. Flavonoids as cytokine modulators: A possible therapy for inflammation-related diseases. Int. J. Mol. Sci. 17, 921, 2016.
Karak P. Biological activities of flavonoids: An overview. IJPSR 3, 1567–1574, 2019.
Bayat P., Farshchi M., Yousefian M., Mahmoudi M., Yazdian-Robati R.Flavonoids, the compounds with anti-inflammatory and immunomodulatory properties, as promising tools in multiple sclerosis (MS) therapy: A systematic review of preclinical evidence. Int. Immunopharmacol. 95, 107562, 2021.
Banjarnahor S.D.S., Artant N. Antioxidant properties of flavonoids. Med. J. Indones. 23, 239–244, 2014.
Bhattacharyya A., Chattopadhyay R., Mitra S., Crowe S.E. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 94, 329–354, 2014.
Wang J., Ren Z., Xu Y., Xiao S., Meydani S.N., Wu D. Epigallocatechin-3-Gallate ameliorates experimental autoimmune encephalomyelitis by altering balance among CD4+ T-cell subsets. Am. J. Pathol. 180, 221–234, 2012.
Wu D. Green tea EGCG, T-cell function, and T-cell-mediated autoimmune encephalomyelitis. J. Investig. Med. 64, 1213–1219, 2016.
Aktas O., Prozorovski T., Smorodchenko A., Savaskan N.E., Lauster R., Kloetze P.M., et al. Green tea epigallocatechin-3-gallate mediates T-cellular NF-kappa B inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J. Immunol. 173, 5794–5800, 2004.
Mähler Α., Mandel S., Lorenz M., Ruegg U., Wanker E.E., Boschmann M., Paul F. Epigallocatechin-3-gallate: a useful, effective and safe clinical approach for targeted prevention and individualised treatment of neurological diseases? EPMA J. 4, 5, 2013.
Herges K., Millward J.M., Hentschel N., Infante-Duarte C., Aktas O., Zipp Z. Neuroprotective effect of combination therapy of glatiramer acetate and epigallocatechin-3-gallate in neuroinflammation. PLoS 6, e25456, 2011.
Semnani M., Mashayekhi F., Azarnia M., Salehi Z. Effects of green tea epigallocatechin-3-gallate on the proteolipid protein and oligodendrocyte transcription factor 1 messenger RNA gene expression in a mouse model of multiple sclerosis. Folia Neuropathol. 55, 199–205, 2017.
Gombash S.E., Lee P.W., Sawdai E., Lovett-Racke A.E. Vitamin D as a risk factor for multiple sclerosis: Immunoregulatory or neuroprotective? Front. Neurol. 13, 796933, 2022.
Ghaseminejad-Raeini A., Ghaderi A., Sharafi A., Nematollahi-Sani B., Moossavi M., Derakhshani A. Sarab G.A. Immunomodulatory actions of vitamin D in various immune-related disorders: a comprehensive review. Front. Immunol. 14, 950465, 2023.
Sîrbe C., Rednic S., Grama A., Pop T.L. An update on the effects of vitamin D on the immune system and autoimmune diseases. Int. J. Mol. Sci. 23, 9784, 2022.
Munger K.L., Levin L.I., Hollis B.W., Howard N.S., Ascherio A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA Neurol. 296, 2832–8, 2006.
Salzer J., Hallmans G., Nyström M., Stenlund H., Wadell G., Sundström P. Vitamin d as a protective factor in multiple sclerosis. Neurology 79, 2140–5, 2012.
Soilu-Hänninen M., Aivo J., Lindström B.M., Elovaara I., Sumelahti M.L., Färkkilä M., et al. A randomised, double blind, placebo controlled trial with vitamin D3 as an add on treatment to interferon β-1b in patients with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 83, 565–571, 2012.
Oliveira S.R., Simão A.N.C., Alfieri D.F., Flauzino T., Kallaur A.P., Mezzaroba L., et al. Vitamin D deficiency is associated with disability and disease progression in multiple sclerosis patients independently of oxidative and nitrosative stress. J. Neurol. Sci. 381, 213–219, 2017.
Narooie-Nejad M., Moossavi M., Torkamanzehi A., Moghtaderi A., Salimi S. Vitamin D receptor gene polymorphism and the risk of multiple sclerosis in south Eastern of Iran. J. Mol. Neurosci. 56, 572–6, 2015.
Nashold, F.E.; Hoag, K.A.; Goverman, J.; Hayes, C.E. Rag-1-dependent cells are necessary for 1,25-dihydroxyvitamin D3 prevention of experimental autoimmune encephalomyelitis. J. Neuroimmunol. 119, 16–29, 2001.
Spach K.M., Hayes C.E. Vitamin D3 confers protection from autoimmune encephalomyelitis only in female mice. J. Immunol. 2005, 175, 4119–4126.
Finamor D.C., Sinigaglia-Coimbra R., Neves L.C.M., Gutierrez M., Silva J.J., Torres L.D., et al. A pilot study assessing the effect of prolonged administration of high daily doses of vitamin D on the clinical course of vitiligo and psoriasis. Dermatoendocrinol. 5, 222–234, 2013.
Gilbert C. What is vitamin A and why do we need it? Community Eye Health 26, 65, 2013.
Huang Z., Liu Y., Qi G., Brand D., Zheng S.G. Role of vitamin A in the immune system. J Clin Med. 7, 258, 2018.
Olson C.R., Mello C.V. Significance of vitamin A to brain function, behavior and learning. Mol. Nutr. Food Res. 54, 489–495, 2010.
Shearer, K.D., Stoney, P.N., Morgan, P.J., McCaffery, P.J. A vitamin for the brain. Trends Neurosci. 35, 733–741, 2012.
de Mendonça Oliveira L., Emidio Teixeira F.M., Notomi Sato M. Impact of retinoic acid on immune cells and inflammatory diseases. Mediators Inflamm. 2018, 3067126, 2018.
Dorosty-Motlagh A.R., Honarvar M.N., Sedighiyan M., Abdolahi M. The molecular mechanisms of vitamin A deficiency in multiple sclerosis. J. Mol. Neurosci. 60, 82–90, 2016.
Royal W. 3rd, Gartner S., Gajewski C.D. Retinol measurements and retinoid receptor gene expression in patients with multiple sclerosis. Mult. Scler. 8, 452–458, 2002.
Saboor-Yaraghi A.A., Harirchian M.H., Mohammadzadeh Honarvar N., Bitarafan S., Abdolahi M. Siassi, F., Salehi E. et al. The effect of vitamin A supplementation on Foxp3 and TGF-β gene expression in Avonex-treated multiple sclerosis patients. J. Mol. Neurosci. 56, 608–612, 2015.