Τα εξωσώματα ως Βιοδείκτες και Θεραπευτικά Οχήματα Χορήγησης Φαρμάκων διαμέσου των Βιολογικών Μεμβρανών για Διάφορες Ασθένειες του Ανθρώπου

Exosomes for treatment of hunan diseases

Authors

  • Fani-Niki Varra 1Department of Medicine, Democritus University of Thrace, 68100 Alexandroupoli, Greece
  • Victoria - Konstantina Varra Department of Pharmacy, School of Health Sciences, University of Patras, Patras 26504, Greece
  • Michail Varras Fourth Department of Obstetrics and Gynecology, "Elena Venizelou" General Hospital, Elena Venizelou Square 2, Ampelokipoi, 11521 Athens

DOI:

https://doi.org/10.60988/p.v37i1.76

Abstract

Τα εξωσώματα είναι νανοκυστίδια αποτελούμενα από μεμβράνες διπλής στοιβάδας που εμπλέκονται σε διάφορες φυσιολογικές και παθολογικές βιολογικές διεργασίες και μπορούν να διαπεράσουν εύκολα τον αιματοεγκεφαλικό φραγμό. Η χρήση των εξωσωμάτων ως οχήματα χορήγησης φαρμάκων προσφέρει σημαντικά πλεονεκτήματα σε σύγκριση με άλλα συστήματα χορήγησης νανοσωματιδίων, όπως είναι τα λιποσώματα και τα πολυμερή νανοσωματίδια. Τα πλεονεκτήματα των εξωσωμάτων έναντι των λιποσώματα και των πολυμερών στην μεταφορά φαρμάκων οφείλονται α) στο μικρό μέγεθους των εξωσωμάτων, β) στη μεγάλη ικανότητα των εξωσωμάτων να προκαλούν σύντηξη της πλασματικής μεμβράνης διαφόρων τύπων κυττάρων και να διοχετεύουν το περιεχόμενό τους εντός αυτών, γ) στο μεγάλο χρόνο ημίσειας ζωής των μεταφερόμενων φαρμάκων, δ) στη μεγάλη τάση των μεταφερόμενων φαρμάκων να συσσωρεύονται στα καρκινικά κύτταρα σε σχέση με τα υγιή, ε) στη μεγάλη ειδικότητα των μεταφερόμενων φαρμάκων με τα εξωσώματα στα κύτταρα-στόχους, στ) στη βιοσυμβατότητα των εξωσωμάτων που μεταφέρουν φάρμακα χωρίς πρόκληση ανοσολογικής αντίδρασης, ζ) στη μεγάλη βιοαποδομησιμότητα των εξωσωματάτων, η) στη μικρή τοξικότητα των εξωσωμάτων, (θ) στη μη συσσώρευση των εξωσωμάτων στο ήπαρ και την αποφυγή του μεταβολισμού πρώτης διόδου. Στο παρόν άρθρο περιγράφονται αναλυτικά η προέλευση, το φορτίο και τα χαρακτηριστικά των εξωσωμάτων, ο ρόλος τους ως διαγνωστικοί και προγνωστικοί βιοδείκτες και η κλινική σημασία τους ως θεραπευτικά συστήματα μεταφοράς 1) μικρών μορίων, 2) μεγάλων μορίων όπως πρωτεϊνών και πεπτιδίων, 3) μικρών παρεμβαλλόμενων μορίων RNA (siRNA) και 4) microRNA (miRNA) για την θεραπεία διαφόρων ασθενειών του ανθρώπου. Συμπερασματικά, θα πρέπει να γίνουν πλήρως κατανοητά τα διάφορα συστατικά των εξωσωμάτων, οι λειτουργικές ιδιότητές τους και ο ρόλος τους ως βιοδείκτες προτού αυτά τα συστήματα χορήγησης φαρμάκων αποτελέσουν τη νέα θεραπευτική πραγματικότητα.

References

Borges F.T., Reis L.A., Schor N. Extracellular vesicles: structure, function, and potential clinical uses in renal diseases. Braz. J. Med. Biol. Res. 46, 824-830, 2013.

Urbanelli L., Magini A., Buratta S., Brozzi A., Sagini K., Polch A., ET AL. Signaling pathways in exosomes biogenesis, secretion and fate. Genes 4, 152-170, 2013.

Zaborowski M.P., Balaj L., Breakefield X.O., Lai C.P. Extracellular vesicles: Composition, biological relevance, and methods of study. Bioscience 65, 783-797, 2015.

Hessvik N.P., LLorente A. Current knowledge on exosome biogenesis and release. Cell Mol. Life Sci. 75, 193-208, 2018.

Jeppesen D.K., Fenix A.M., Franklin J.L., Higginbotham J.N., Zhang Q., Zimmerman L.J., ET AL. Reassessment of exosome composition. Cell 177, 428-445.e18, 2019.

Boukouris S., Mathivanan S. Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics Clin. Appl. 9, 358-367, 2015.

Qin J., Xu Q. Functions and application of exosomes. Acta Pol. Pharm. 71, 537-543, 2014.

Tukmechi A., Rezaee J., Nejati V., Sheikhzaden N. Effect of acute and chronic toxicity of paraquat on immune system and growth performance in rainbow trout, Oncorhynchus mykiss. Aquacult. Res. 45, 1737-1743, 2014.

Chulpanova D.S., Kitaeva K.V., James V., Rizvanou A.A., Solovyeva V.V. Therapeutic properties of extracellular vesicles in cancer treatment. Front. Immunol. 9, 1534, 2018.

Sun Y.-Z., Ruan J.-S., Jiang Z.-S., Wang L., Wang S.-M. Extracellular vesicles: a new perspective in tumor therapy. BioMed. Res. Int. 2018, 2687954, 2018.

Gurunathan S., Kang M.-H., Jeyaraj M., Qasim M., Kim J.-H. Review of the isolation, characterization, biological function, and multiarious therapeutic approaches of exosomes. Cells 8, 307, 2019.

Soraya H., Sani N.A., Jabbari N., Rezaie J. Metformin increases exosome biogenesis and secretion of U87 MG human glioblastoma cells: a possible mechanism of therapeutic resistance. Arch. Med. Res. 52, 151-162, 2021.

Feghhi M., Rezaie J., Akbari A., Jabbari N., Jarari H., Seidi F., Szafert S. Effect of multi-functional polyhydroxylated polyhedral oligomeric silsesquioxane (POSS) nanoparticles on the angiogenesis and exosome biogenesis in human umbilical vein endothelial cells (HUVECs). Mater. Des. 197, 109227, 2021.

Rezaie J., Feghhi M., Etemdi T. A review on exosomes application in clinical trials: perspective, questions, and challenges. Cell Commun. Signal. 20, 145, 2022.

Akers J.C., Gonda D., Kim R., Carter B.S., Chen C.C. Biogenesis of extracellular vesicles (EV): Exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J. Neuro-Oncol. 113, 1-11, 2013.

Patil A.A., Phee W.J. Exosomes: biogenesis, composition, functions, and their role in pre-metastatic niche formation. Biotechnol. Bioprocess Eng. 24, 689-701, 2019.

Kalluri R., Lebleu V.S. The biology, function, and biomedical applications of exosomes. Science 367, eaau6977, 2020.

Teng F, Fussenegger M. Shedding light on extracellular vesicle biogenesis and bioengineering. Adv. Sci. (Weinh.) 8, 2003505, 2021.

Buschmann D., Mussack V., Byrd J.B. Separation, characterization, and standarization of extracellular vesicles from drug delivery applications. Adv. Drug Deliv. 174, 348-368, 2021.

Tarasov V.V., Svistunov A.A., Chubarev V.N., Dostdar S.A., Sokolov A.V., Brecka A., et al. Extracellular vesicles in cancer nanomedicine. Semin. Cancer Biol. 69, 212-225, 2021.

Choi J.-Y., Kim S, Kwak H.-B., Park D.-H., Kark J.-H., Ryu J.-S. Extracellular vesicles as a source of urological biomarkers: Lessons learned from advnaces and challenges in clinical applications to major diseases. Int. Neurourol. J. 21, 83-96, 2017.

Butler J.T., Abdelhamed S., Kurre P. Extracellular vesicles in the hematopoietic microenvironment. Haematologica 103, 382-394, 2018.

Liu M., Sun Y., Zhang Q. Emerging role of extracellular vesicles in bone remodeling. J Dent Res 97, 859-868, 2018.

Jurj A., Zanoaga O., Braicu C., Lazar V., Tomulease C., Irimie A., et al. A comprehensive picture of extracellular vesicles and their contents. Molecular transfer to cancer cells. Cancer 1, 298, 2020.

Colombo M., Moita C., Van Niel G., Kowal J., Vignero J., Benaroch P., et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci. 126, 5553-5565, 2013.

Rajput A., Varhney A., Bajaj R., Pokharkar V. Exosomes as new generation vehicles for drug delivery: Biomedical Applications and Future Perspectives. Molecules 27, 7289, 2022.

Soung Y.H., NGUYEN T, CAO H, LEE J, CHUNG J. Emerging roles of exosomes in cancer invasion and metastasis. BMB Rep. 49, 18, 2016.

Αbdayzdani N., Nourazarian A., Charoudeh H.N., Kazimi M., Feizy N., Akbarzade M., et al. The role of morphine on rat neural stem cells viability, neuro-angiogenesis and neuro-steroidgenesis properties. Neurosci. Lett. 636, 205-212, 2017.

Blanc L., Vidal M. New insights into the function of Rab GTPases in the context of exosomal secretion. Small GTPases 9, 95-106, 2018.

Hassanpour M., Rezaie J., Darabi M., Hiradfar A., Rahbarghazi R, Nouri M. Autophagy modulation altered differentiation capacity of CD146+cells toward endothelial cells, pericytes, and cardiomyocytes. Stem Cell Res Ther 11, 1-14, 2020.

Xu J., Camfield R., Gorski S.M. The interplay between exosomes and autophagy-partners in crime. J. Cell Sci. 131, jcs215210, 2018.

Xing H., Tan J., Miao Y., Lv Y., Zhang Q. Crosstalk between exosomes and autophagy: a review of molecular mechanisms and therapies. J. Cell Mol. Med. 25, 2297-2308, 2021.

Yuan D., Zhao Y, Banks W.A., Bullock K.M., Haney M., Batrakova E., Kabanov A.V. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials 142, 1-12, 2017.

Van Niel G., Porto-Carreilo I., Simoes S., Raposo G. Exosomes: a common pathway for a specialized function. J. Biochem. 140, 13-21, 2006.

Raposo G., Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2200, 373-383, 2013.

Dominkuš P.P., Stenovec M., Sitar S., Lasič E., Zorec R., Plemenitaš A., et al. PKH26 labeling of extracellular vesicles. Characterization and cellular internalization of contaminating PKH26 nanoparticles. Biochim. et Biophys. Acta (BBA)-Biomembr. 1860, 1350-1361, 2018.

Jankovičová J., Sečová P., Michalková K., Antalíková J. Tetraspanins, more than markers of extracellular vesicles in reproduction. Int. J. Mol. Sci. 21, 7568, 2020.

Gurung S., Perocheau D., Touramanidou L., Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun. Signal. 19, 47 2021.

Yellon D.M., Davidson S.M. Exosomes. Circ. Res. 114, 325-332, 2014.

Balaj L., Lessard R., Dai L., Cho Y.-J., Pomeroy S.L., Breakefield X.O., et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun. 2, 180, 2011.

Thakur B.K., Zgang H., Becker A., Matei I., Huang Y., Costa-Silva B., et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 24, 766-769, 2014.

Sansone P., Savini C., Kurelac I., Chang Q., Amato L.B., Strillacci A., et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc. Natl. Acad. Sci. U S A 114, E9066-e9075, 2017.

Μαστρογεωργίου Μ. Εξωσώματα και ρινοφαρυγγικός καρκίνος. (Ανέκδοτη πτυχιακή εργασία). Ιατρική Σχολή, Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Αθήνα, Ελλάδα, 2023.

Pegtel D.M., Gould S.J. Exosomes. Annu. Rev. Biochem. 88, 487-514, 2019.

Shurtleff M., Yao J., Qin Y., Nottingham R.M., Temoche-Diaz M.M., Schekman R., et al. Broad role for YBX1 in defining the small noncoding RNA composition of exosomes. Proc. Natl. Acad. Sci. U S A, 114(43), p. E8987-e8995, 2017.

Yáñez-Mó M., Siljander P.R.-M., Andreu Z., Zavec A.B., Borràs F.E., Buzas E.I., et al. Biological properties of extracellular vesicles and their physilogical functions. J Extracell Vesicles 4, 10.3402/jev.v4.27066, 2015.

Zhang H.-G., Liu C., Su K., Yu K., Yu S., Zhang L., et al. A Membrane Form of TNF-α Presented by Exosomes Delays T Cell Activation-Induced Cell Death. J. Immunol. 176, 7385-7393, 2006.

Sitia R., Rubartelli A. Evolution, role in iflammation, and redox control of leaderless secretory proteins. J. Biol. Chem. 295, 7799-7811, 2020.

Murphy C., Withrow J., Hunter M., Liu Y, Tang Y.L., Lulzele S., et al. Emerging role of extracellular vesicles in musculoskeletal diseases. Mol. Aspects Med. 60, 123-128, 2018.

Cyrpyk W., Nyman T.A., Matikainen S. From inflammasome to exosome – does extracellular vesicles secretion contritute an inflammasome-dependent immune response? Front. Immunol. 9, 2188, 2018.

Teixeira G.Q., Pereira C.L., Ferreira J.R., Maia A.F., Gomez-Lazaro M., Barbosa M.A., et al. Immunomodulation of human mesenchymal stem/stromal cells in intervertebral disc degeneration: Insights from a proinflammatory/degenerative ex vivo model. Spine (Phila Pa 1976) 43, E673-E682, 2018.

Ranson N., Veldhuis M., Mitchell B., Fanning S., Cook A.L., Kunde D., et al. NLRP3-Dependent and independent processing of interleukin (IL)-1β in active ulcerative colitis. Inter. J. Mol. Sci. 2019, 20, 57, 2019.

Scotland T., Sandvir K., Llorente A. Lipids in exosomes: Current knowledge and the way forward. Prog. Lipid Res. 66, 30-41, 2017.

Dillon S.R., Mancini M., Rosen A., Schlissel M.S. Annexin V binds to viable B cells and colocalizes with a marker of lipid rafts upon B cell receptor activation. J. Immunol. 164, 1322-1332, 2000.

Gender P.P., Cabrini M., Jancic C., Paoletti L., Banchio C., Von Bildering C., et al. Rab27a controls HIV-1 assembly by regulating plasma membrane levels of phosphatidylinositol 4,5-bisphosphate. J. Cell Biol. 209, 435-52, 2015.

Μωυσίδης Σ. Βλαστοκύτταρα και αναγεννητική ιατρική. (Ανέκδοτη πτυχιακή εργασία). Τμήμα Ιατρικής, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Θεσσαλονίκη, Ελλάδα, 2023.

Xu J., Liao K., Zhou W. Exosomes regulate the trasformation of cancer cells in cancer stem cell homeostasis. Stem Cells Int 2018, 4837370, 2018.

Segura E., Nicco C., Lombard B., Véron P., Raroso G, Batteux F., et al. ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood 106, 216-223, 2005.

Milane L., Singh A., Matheolabakis G., Suresh M., Amiji M.M. Exosome mediated communication within the tumor microenviroment. J. Control. Release 219, 278-294, 2015.

Chen I.H., Xue L., Hsu C.C., Paez J.S., Pan L., Andaluz H., et al. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proc. Natl. Acad. Sci. USA 114, 3175–3180, 2017.

Mahmoudi M., Taghavi Farahabadi M., Hashemi S.M. Exosomes: Mediators of Immune Regulation. Immunoreg. 2, 3-8, 2019.

Kato T., Fahrmann J.F., Hanash S.M., Vykoukal J. Extracellular vesicles mediate B cell immune response and are a potential target for cancer therapy. Cell 9, 1518, 2020.

Bhatnager S., Schorey J.S. Exosomes released from infected macrophages contain Mycobacterium avium glycopeptidolipids and are proinflammatory. J. Biol. Chem. 282, 25779-89, 2007.

Robbins P.D., Dorronsoro A., Booker C.N. Regulation of chronic inflammatory and immune processes by extracellular vesicles. J. Clin. Investig. 126, 1173-1180, 2016.

Liu Y., Holmes C. Tissue regeneration capacity of extracellular vesicles isolated from bone marrow-derived and adipose-derived mesenchymal stromal/stem cells. Front. Cell Dev. Biol. 9, 648098, 2021.

McGough I.J., Vincent J.-P. Exosomes in developmental signalling. Development 2016, 143:2482-2493.

Wu H.-M., Chen L.-H., Hsu L.-T., Lai C.-H. Immune tolerance of embryo implantation and pregnancy: The role of human decidual stromal cell-and embryonic-derived extracellular vesicles. Int. J. Mol. Sci. 23, 13382, 2022.

Zhang B., Yin Y., Lai R.C., Lim S.K. Immunotherapeutic potential of extracellular vesicles. Front. Immunol. 5, 518, 2014.

Hedlund M., Stenqvist A.-C., Nagaeva O., Kjellberg L., Wulff M., Baranov V., et al. Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression: evidence for immunosuppressive function. J. Immunol. 183, 340-351, 2009.

Lundholm M, Schröder M., Magaeva O., Baranov V., Widmark A., Mincheva-Nilsson L., Wikström P. Prostate tumor-derived exosomes down-regulate NKG2D expression of natural killer cells and CD8+ T cells: Mechanism of immune evasion. PLos One 9, 3108925, 2014.

Morelli A.E., Sadovsky Y. Extracellular vesicles and immune response during pregnancy: A balancing act. Immunol. Rev. 308, 105-122, 2022.

Qu P., Qing S., Liu R., Qin H., Wang W., Qiao F, et al. Effects of embryo-derived exosomes on the development of bovine cloned embryos. BLos One 12, e0174535, 2017.

Raab-Traub N., Dittmer D.P. Viral effects on the content and function of extracellular vesicles. Nat. Rev. Microbiol. 15, 559-572, 2017.

Hu Y., Rao S.-S., Wang Z.-X., Cao J., Tan Y.-J., Luo J., et al. Exosomes from human umbilical cord blood accelerate cuatneous wound healing through miR-21-3p-mediated promotion of angiogenesis and fibroblast function. Theranostics 8, 169-184, 2018.

Lener T., Gimona M., Aigner L., Börger V., Buzas E., Camussi G., et al. Applying extracellular vesicles based therapeutics in clinical trials – An ISEV position paper. J. Extracell. Vesicles 4, 30087, 2015.

Ngolab J., Trinh I., Rockenstein E., Mante M., Florio J., Trejo M, et al. Brain-derived exosomes from dementia with Lewy bodies propagate α-synuclein pathology. Acta Neuropathol. Commun. 5, 1-10, 2017.

Pusic A.D., Kraig R.P. Youth and Environmental Enrichment Generate Serum Exosomes Containing miR-219 that Promote CNS Myelination. Glia 62, 284-299, 2014.

Cai Z.-Y., Xiao M., Quazi S.H., Ke Z.-Y. Exosomes: a novel therapeutic target for Alzheimer’s disease? Neural. Regen. Res. 13, 930-935, 2018.

Li J.-Y., Li Q.-Q., Sheng R. The role and therapeutic potential of exosomes in ischemic stroke. Neurochem. Int. 151, 105194, 2021.

Ramkrishnaiah V., Thumann C., Fofana I., Habersetzer F., Pan Q., De Ruitter P.E., et al. Exosome-mediated trasmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proc. Natl. Acad. Sci. USA 110, 13109-13113, 2013.

Costa-Silva B., Aiello N.M., Ocean A.J., Singh S., Zhang H., Thakur B.K., et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17, 816-826, 2015.

Melo S.A., Sugimoto H., O’Connell J.T., Kato N., Villanueva A., Vidal A., et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26, 707-721, 2014.

Fiandaca M.S., Kapogiannis D., Mapstone M., Boxer A., Eitan E., Schwartz J.B., et al. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neural derived blood exosomes: A case-control study. Alzheimer’s Dement. 11, 600-607.e1, 2015.

Cappelo F., Logozzi M., Campanella C., Bavisotto C.C., Marcilla A., Properzi F., et al. Exosomes levels in human body fluids: A tumor marker by themselves? Eur. J. Parm. Sci. 96, 93-98, 2017.

Mendt M., Rezvani K., Shpall E. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant 54, 789-792, 2019.

KALLURI R. The biology and function of fibroblasts in cancer. Nat Rev Cancer 16, 582-598, 2016.

Varra F.N., Varras M., Varra V.K., Theodosis-Nobelos P. Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunction and their inflammation-mediating treatment options (Review). Mol. Med. Rep. 29, 95, 2024.

Varra F.-N., Gkouzgos S., Varras M., Theodosis-Nobelos P. Efficacy of antioxidant compounds in obesity and its associated comorbidities. Pharmakeftiki 36, 2-19, 2024.

Ji C., Guo X. The clinical potential of circulating microRNAs in obesity. Nat. Rev. Endocrinol. 15, 731–743. 2019.

Kumar, A.; Sundaram, K.; Mu, J.; Dryden, G.W.; Sriwastva, M.K.; Lei, C.; Zhang, L.; Qiu, X.; Xu, F.; Yan, J. High-fat diet-induced upregulation of exosomal phosphatidylcholine contributes to insulin resistance. Nat. Commun. 12, 213, 2021.

Wang, W.; Zhu, N.; Yan, T.; Shi, Y.-N.; Chen, J.; Zhang, C.-J.; Xie, X.-J.; Liao, D.-F.; Qin, L. The crosstalk: Exosomes and lipid metabolism. Cell Commun Signal 18, 119, 2020.

Safdar A., Saleem A., Tarnopolsky M.A. The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat. Rev. Endocrinol. 12, 504–517, 2016.

Guay C, Regazzi R. New emerging tasks for microRNAs in the control of beta-cell activities. Biochim Biophys Acta 1861, 2121-2129, 2016.

Nesca V., Guay C., Jacovetti C., Menoud V., Peyot M.-L., Laybutt D.R., et al. Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia 56, 2203-2212, 2013.

Eliasson L., Esguerra J.L. Role of non-coding RNAs in pancreatic beta-cell development and physiology. Acta Physiol. (Oxf.) 211, 273-284, 2014.

Wang N, Li J, Hu Z, Ngowi EE, Yan B, Qiao A. Exosomes: New insights into the pathogenesis of metabolic syndrome. Biology 12, 1480, 2013.

O’Neil S, O’Driscoll L. Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies. Obes. Rev. 16, 1–12, 2015.

Ying W., Riopel M., Bandyopadhyay G., Dong Y., Birmingham A., Seo J.B., et al. Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell 171, 372–384.e12, 2017.

Dang S.-Y., Leng Y., Wang Z.-X., Xiao X., Zhang X., When T., et al. Exosomal transfer of obesity adipose tissue for decreased miR-141-3p mediate insulin resistance of hepatocytes. Int. J. Biol. Sci. 15, 351, 2019.

Mao Z.-J., Weng S.-Y., Lin M., Chai K.-F. Yunpi Heluo decoction attenuates insulin resistance by regulating liver miR-29a-3p in Zucker diabetic fatty rats. J. Ethnopharmacol. 243, 111966, 2019.

Su T., Xiao Y., Xiao Y., Guo Q., Li C., Huang Y., et al. Bone marrow mesenchymal stem cells-derived exosomal MiR-29b-3p regulates aging-associated insulin resistance. ACS Nano. 13, 2450–2462, 2019.

Al-Kafaji G., Al-Mahtaresh H.A., Salem A.H. Expression and clinical significance of miR-1 and mirR-133 in pre-diabetes. Biome. Rep. 14, 33, 2021.

Wang Y, Li M, Chen L, Bian H, Chen X, Zheng H, et al. Natural killer cell-derived exosomal miR-1249-3p attenuates insulin resistance and inflammation in mouse models of type 2 diabetes. Signal. Transduct. Target Ther. 6, 409, 2021.

Properzi F., Logozzi M., Fais S. Exosomes: the future of biomarkers in medicine. Bomark. Med. 7, 769-778, 2013.

Nadaeinia R., Manian M., Jazayeri M., Ranjar M., Salehi R., Sharifi M., et al. Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer. Cancer Gene Ther. 24, 48-56, 2017.

Macías M., Alegre E., Díaz-Lagares A, Patiño A. Pérez-Gracia J., Sannamed M., et al. Liquid biopsy: from basic research to clinical practice. Adv. Clin. Chem. 83, 73–119, 2018.

ZHOU B, XU K, ZHENG X, CHEN T, WANG J, SONG Y, ET AL. Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct Target Ther 5, 1-14, 2020.

Ohno S, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyuama N, ET AL. Systemically injected exosomes targeted to EGFR deliver antiotumor microRNA to breast cancer cells. Mol Ther 21, 185-191, 2013.

Steinbichler T.B., Dudás J., Riechelman H., Skvortsova II. The role of exosomes in cancer metastasis. Semin Cancer Biol 44, 170-181, 2017.

Tian Y., Li S., Song J., Ji T., Zhu M., Anderson G.J., et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35, 2383–2390, 2014.

Κούλη Π. Εξωσώματα και καρκίνος του πνεύμονα. (Ανέκδοτη πτυχιακή εργασία). Τμήμα Ιατρικής, Δημοκρίτειο Πανεπιστήμιο Θράκης, Αλεξανδρούπολη, Ελλάδα, 2021.

Wang X., Tian L., Lu J., Oi-Lin Ng I. Exosomes and cancer – Diagnostic and prognostic biomarkers and therapeutic vehicle. Oncogenesis 11, 54, 2022.

Melo S.A., Luecke L.B., Kahlert C., Fernandez A.F., Gammon S., Kaye J., et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523, 177–182, 2015.

Bijnsdord I.V., Geldof A.A., Lavaei M., Piersma S.R., Van Moorselaar J.A., Jimenez C.R. Exosomal ITGA3 interferes with non-cancerous prostate cell functions and is increased in urine exosomes of metastatic prostate cancer patients. J. Extracell. Vesicles 2, 1–10, 2013.

Hoshino A, Costa-Silva B, Shen T.-L., Rodrigues G., Hashimoto A., Mark M.T., et al. Tumor exosome integrins determine organotropic metastasis. Nature 527, 329-335, 2015.

Sandfeld-Paulsen B., Jakosben K.R., Bæk R., Folkersen B.H., Rasmussen T.R., Meldgaard P., et al. Exosomal proteins as diagnostic biomarkers in lung cancer. J. Thorac. Oncol. 11, 1701–1710, 2016.

Maji S., Chaudhary P., Akopova I., Nguyen P.M., Hare R.J., Gryczynski I., et al. Exosomal annexin II promotes angiogenesis and breast cancer metastasis. Mol. Cancer Res. 15, 93–105, 2017.

Baker S.G., Kramer B.S., Mclntosh M., Patterson B.H., Shyr Y., Skates S. Evaluating markers for the early detection of cancer: overview of study designs and methods. Clin. Trials 3, 43-56, 2006.

Alleson K., Castillo J., San Lucan F.A., Scelo G., Kim D.U., Bernard V., et al. High prevalence of mutant KRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. Ann. Oncol. 28, 741-747, 2017.

Bernard V., Kim D.U., San Lucas F.A., Castillo J., Allenson K., Mulu F.C., et al. Circulating nucleic acids associate with outcomes of patients with pancreatic cancer. Gastroenterology 156, 108–118, 2019.

Lux A., Kahlert C., Grützmann R., Pilarsky C. c-Met and PD-L1 on circulating exosomes as diagnostic and prognostic markers for pancreatic cancer. Int. J. Mol. Sci. 20, 3305, 2019.

Castellanos-Rizaldos E., Grimm D.G., Tadigotla V., Hurley J., Healy J., Neal P.L., et al. Exosome-based detection of EGFR T790M in plasma from non–small cell lung cancer patients. Clin. Cancer Res. 24, 2944–2950, 2018.

Qu L., Ding J., Chen C., Wu Z.-J., Liu B., Gao Y., et al. Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell 29, 653–668, 2016.

Cazzoli R., Buttitta F., Di Nicola M., Malatesta S., Marchetti A., Rom W.N., et al. microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer. J. Thor. Oncol. 8, 1156-1162, 2013.

Tanaka Y., Kamohara H., Kinoshita K., Kurashige J., Ishimoto T., Iwatsuki M., et al. Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer 119, 1159-1167, 2013.

Armstrong D.A., Green B.B., Seigne J.D., Schned A.R., Marsit C.J. MicroRNA molecular profiling from matched tumor and bio-fluids in bladder cancer. Mol. Cancer 14, 194, 2015.

Bu H., He D., He X., Wang K. Exosomes: Isolation, Analysis, and Applications in Cancer Detection and Therapy. Chembiochem. 20, 451-461, 2019.

Zeng Z., Li Y., Pan Y., Lan X., Song F., Sun J., et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat. Commun. 9, 5395, 2018.

Meltzer S., Bjørnetø T., Lyckander L.G., Flatmark K, Duelad S., Samiappan R., Johansen C., Kalanzhi E., Ree A.H., Redalen K.R. Circulating exosomal miR-141-3p and miR-375 in metastatic progression of rectal cancer. Transl. Oncol. 12, 1038-1044, 2019.

Hu J.L., Wang W., Lan X.L., Zeng Z.C., Liang Y.S., Yan Y.R., et al. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer 18, 91, 2019.

Shao Y., Chen T., Zheng X., Yang S., Xu K., Chen X., et al. Colorectal cancer-derived small extracellular vesicles establish an inflammatory premetastatic niche in liver metastasis. Carcinogenesis 2018, 39:1368–1379.

Fu F., Jiang W., Zhou L., Chen Z. Circulating exosomal miR-17-5p and miR-92a-3p predict pathologic stage and grade of colorectal cancer. Transl. Oncol. 11, 221–232, 2018.

Peng Z.Y., Gu R.H., Yan B. Downregulation of exosome-encapsulated miR-548c-5p is associated with poor prognosis in colorectal cancer. J. Cell. Biochem. 120, 1457–1463, 2018.

Wei F., Ma C., Zhou T., Dong X., Luo Q., Geng L., et al. Exosomes derived from gemcitabine-resistant cells transfer malignant phenotypic traits via delivery of miRNA-222-3p. Mol. Cancer 16, 132, 2017.

Ghafarian F., Pashirzad M., Khazaei M., Rezayi M., Hassanian S.M., Ferns G.A., et al. The clinical impact of exosomes in cardiovascular disorders: from basic science to clinical application. J. Cell. Physiol. 234, 12226–12236, 2019.

Howard B.V., Robbins D.C., Sievers L., Lee E.T., Rhoades D., Devereux R.B., et al. LDL cholesterol as a strong predictor of coronary heart disease in diabetic individuals with insulin resistance and low LDL: The Strong Heart Study. Arterioscler. Thromb. Vasc. Bio.l 20, 830–835, 2000.

Νdrepera G., Colleran R., Braun S., Cassese Hieber J., Fusano M., Kunfner S., et al. High-sensitivity troponin T and mortality after elective percutaneous coronary intervention. J. Am. Coll. Cardiol. 68, 2259–2268, 2016.

Kuwabara Y., Ono K., Horie T., Nishi H., Nagao K., Kinoshita M., et al. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ. Cardiovasc. Genet. 4, 446–454, 2011.

Goren Y., Kushnir M., Zafrir B., Tabak S, Lewis B.S., Amir O. Serum levels of microRNAs in patients with heart failure. Eur. J. Heart Fail. 14, 147–154, 2012.

Matsumoto S., Sakata Y., Suna S., Nakatani D., Usami M., Hara M., et al. Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circulation Res 113, 322–326, 2013.

Barile L., Lionetti V., Cervio E., Matteucci M., Gherghiceanu M., Popescu L.M., et al. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc. Res. 103, 530–541, 2014.

Liu Y., Li Q., Hosen M.R., Zietzer A., Llender A., Levermann P., Schimitz T., Frühwald D., Goody P. Nickenig G., Werner N. Jansen F. Atherosclerotic conditions promote the packaging of functional microRNA-92a-3p into endothelial microvesicles. Circ Res 124:575-587, 2019.

Li, H. Liao Y., Gao L., Zhuang T., Huang Z., Zhu H., Ge J. Coronary serum exosomes derived from patients with myocardial ischemia regulate angiogenesis through the miR-939-mediated nitric oxide signaling pathway. Theranostics 8, 2079–2093, 2018.

Kanhai D., Visseren F.L.J., Van Der Graaf Y., Schoneveld A.H., Catanzariti L.M., Timmers L., et al. Microvesicle protein levels are associated with increased risk for future vascular events and mortality in patients with clinically manifest vascular disease. Int. J. Cardiol. 168, 2358-2363, 2013.

Bezerin A.E., Kremzer A.A., Martovitskaya Y.V., Berezina T.A., Gromenko E.A. Pattern of endothelial progenitor cells and apoptotic endothelial cell-derived microparticles in chronic heart failure patients with preserved and reduced left ventricular ejection fraction. EBioMedicine 20, 86-94, 2016.

Crivelli S.M., Giovagnoni C., Zhu Z., Tripathi P., Elsherbini A., Quadri Z., et al. Function of ceramide tranfer protein for biogenesis and sphingolipid composition of extracellular vesicles. J. Extracell. Vesicles 11, e12233, 2022.

Catalano M., O’Driscoll L. Inhibiting extracellular vesicles formation and release: a review of EV inhibitors. J. Extracel. Vesicles 9, 1703244, 2020.

Jeppesen D.K., Zhang Q., Franklin J.L., Coffey R.J. Extracellular vesicles and nanoparicles: emerging complexities. Treds Cell Biol. 33, 667-681, 2023.

Liu Q., Li D., Pan X., Liang Y. Targeted therapy using engineered extracellular vesicles: principles and strategies for membrane modification. J. Nanobiotechnology 21, 334, 2023.

Ghadami S., Dellinger K. The lipid composition of extracellular vesicles: applications in diagnostic and therapeutic delivery. Front. Mol. Biosci. 10, 1198044, 2023.

Teixeira A.F., Wang Y., Iaria J., Ten Dijke P., Zhu J.-J. Simultaneously targeting extracellular vesicle trafficking and TGF-β receptor kinase activity blocks signaling hyperactivation and metastasis. Signal Transduct. Target Ther. 8, 456, 2023.

Papareddy P., Tapken I., Kroh K., Varma Bhongir R.K., Rahman M., Baumgarten M., et al. The role of extracellular vesicle fusion with target cells in triggering systemic inflammation. Nat. Commun. 15, 1150, 2024.

Mehanny M., Lehr C.-M., Fuhrann G. Extracellular vesicles as antigen carriers for novel vaccination avenues. Adv. Drug Deliv. Rev. 173, 164–180, 2021.

Dad H.A., Gu T.-W., Zhu A.-Q., Huang L.-Q., Peng L.-H. Plant exosome-like nanovesicles: emerging therapeutics and drug delivery nanoplatforms. Mol. Ther. 29, 13-31, 2021.

Kim, G.; Lee, Y.; Ha, J.; Han, S.; Lee, M. Engineering exosomes for pulmonary delivery of peptides and drugs to inflammatory lung cells by inhalation. J. Control. Release 330, 684–695, 2021.

Chinnappan M, Srivastava A., Amreddy N., Razaq M., Pareek V., Almed R., et al. Exosomes as drug delivery vehicle and contributor of resistance to anticancer drug. Cancer Lett. 486, 18-28, 2020.

Patil S.M., Sawant S.S., Kunda N.K. Exosomes as drug delivery systems: a brief overview and progress update. Eur. J. Pharm. Biopharm. 154:259-269, 2020.

Kar R., Dhar R., Mukherjee S.., Nag S., Gorai S., Mukerjee N., et al. Exosome-based smart drug delivery tool for cancer theranostics. ACS Biomater. Sci. Eng. 9, 577-594, 2023.

Zhuang M., Du D., Pu L., Song H., Deng M., Long Q., et al. SPION-decorated exosome delivered BAY55-9837 targeting the pancreas through magnetism to improve the blood GLC response. Small 15, 1903135, 2019.

Zhuang M., Rao L., Chen Y., Xiao S., Xia H., Yang J., et al. Controlled SPION-exosomes loaded with quercetin preserves pancreatic beta cell survival and function in type 2 diabetes mellitus. Int J Nanomedicine 18, 5733-5748, 2023.

Hou X., Yang D., Yang G., Li M., Zhang J. Therapeutic potential of vasoactive intestinal peptide and its receptor VPAC2 in type 2 diabetes. Front. Endocrinol. 13, 984198, 2022.

Butreddy A., Kommineni N., Duphipala N. Exosomes as naturally occuring vehicles for deliver of biopharmaceuticals: Insights from drug delivery to clinica perspectives. Nanomaterials (Basel) 11, 1481, 2021.

Zeng H., Guo S., Ren X., Wu Z., Liu S., Yao X. Current strategies for exosomes cargo loading and targeting delivery. Cell 12, 1416, 2023.

Lu Y., Huang W., Li M., Zheng A. Exosome-based carrier for DNA delivery: progress and challenges. Pharmaceutics 15, 598, 2023.

Alvarez-Erviti L., Seow Y., Yin H., Betts C., Lakhal S., Wood M.J.A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341–345, 2011.

Bartel D.P. MicroRNAs: genomic, biogenesis, mechanism and function. Cell 116, 281-297, 2004.

Τροχάτου Ο. Μελέτη του ρόλου των microRNAs στη ρύθμιση των μηχανισμών αυτοανανέωσης και διαφοροποίησης των μεσεκχυματικών βλαστικών κυττάρων του αμνιακού υγρού. Ιατρική Σχολή, Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Αθήνα, Ελλάδα, 2013.

Bartel D.P. MicroRNAs: tarteg recognition and regulatory functions. Cell 136, 215-233, 2009.

Ha, D.; Yang, N.; Nadithe, V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharm. Sin. B 6, 287–296, 2016.

Downloads

Published

15-04-2025

How to Cite

[1]
Varra, F.-N. et al. 2025. Τα εξωσώματα ως Βιοδείκτες και Θεραπευτικά Οχήματα Χορήγησης Φαρμάκων διαμέσου των Βιολογικών Μεμβρανών για Διάφορες Ασθένειες του Ανθρώπου: Exosomes for treatment of hunan diseases. Pharmakeftiki . 37, 1 (Apr. 2025). DOI:https://doi.org/10.60988/p.v37i1.76.

Issue

Section

Review Articles