Eudragit Nanofiber for Effective Coating in Colon-Targeted Drug Delivery

Authors

  • Ashish Sriram Mishra Research Scholar
  • Pavitra K
  • Dr.Manimaran V.Manimaran Associate Professor

DOI:

https://doi.org/10.60988/p.v37i1.72

Keywords:

Eudragit nanofibers, colon-targeted drug delivery, electrospinning, pH-responsive polymers, in vitro studies, in vivo studies, inflammatory bowel disease, colorectal cancer, mucoadhesion, controlled release.

Abstract

Eudragit nanofiber-based drug delivery systems offer a novel and promising solution for colon-targeted therapies. This review extensively covers the unique properties, fabrication methods, and therapeutic applications of Eudragit nanofibers in treating colonic diseases. Known for their pH-responsive solubility, Eudragit polymers enable targeted drug release in the colon, protecting the drug from early release in the stomach’s acidic environment. The electrospinning process, essential for creating Eudragit nanofibers, facilitates high drug loading and controlled, sustained release. In vitro studies have shown these nanofibers’ effective drug release, mucoadhesive properties, and permeability. In vivo animal studies demonstrate promising targeting efficiency, biodistribution, and therapeutic efficacy, especially for inflammatory bowel disease (IBD), colorectal cancer, and colonic infections. Despite their advantages, challenges remain, including maintaining consistent fiber morphology, scaling up production, and navigating regulatory hurdles. Nonetheless, the benefits—such as enhanced therapeutic efficacy, reduced systemic side effects, and better patient compliance—highlight Eudragit nanofibers as a superior option for advanced drug delivery. Future research should focus on developing smart, responsive nanofiber systems, personalized medicine approaches, and exploring new therapeutic applications. This review highlights the transformative potential of Eudragit nanofibers in colon-targeted drug delivery, aiming to improve treatment outcomes for patients with colonic disorders.

Author Biographies

Ashish Sriram Mishra, Research Scholar

Department of Pharmaceutics

SRM College of Pharmacy 

SRM Institute of Science and Technology SRMIST

Kattankulathur Chennai Tamil Nadu 603203 India

Pavitra K

Department of Pharmacy 

Department of Pharmaceutics

SRM College of Pharmacy

SRM Institute of Science and Technology

Kattankulathur Chennai Tamil Nadu,603203 India

References

Abadi, B., Goshtasbi, N., Bolourian, S., Tahsili, J., Adeli-Sardou, M., & Forootanfar, H. (2022) et al., . Electrospun hybrid nanofibers: Fabrication, characterization, and biomedical applications. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/FBIOE.2022.986975

Abu-Freha, N., Cohen, B., Gordon, M., Weissmann, S., Kestenbaum, E. H., Vosko, S., Abu-Tailakh, M., Ben-Shoshan, L., Cohen, D. L., & Shirin, H. (2023) et al., . Colorectal cancer among inflammatory bowel disease patients: risk factors and prevalence compared to the general population. Frontiers in Medicine, 10. https://doi.org/10.3389/FMED.2023.1225616/FULL

Ahmed, F. E., Lalia, B. S., & Hashaikeh, R. (2015) ey al., . A review on electrospinning for membrane fabrication: Challenges and applications. Desalination, 356, 15–30. https://doi.org/10.1016/J.DESAL.2014.09.033

Akhgari, A., Heshmati, Z., Afrasiabi Garekani, H., Sadeghi, F., Sabbagh, A., Sharif Makhmalzadeh, B., & Nokhodchi, A. (2017) et al., . Indomethacin electrospun nanofibers for colonic drug delivery: In vitro dissolution studies. Colloids and Surfaces B: Biointerfaces, 152, 29–35. https://doi.org/10.1016/J.COLSURFB.2016.12.035

Amani, M., Rakhshani, A., Maghsoudian, S., Rasoulzadehzali, M., Yoosefi, S., Keihankhadiv, S., Fatahi, Y., Darbasizadeh, B., Ebrahimi, S. M., Ejarestaghi, N. M., Farhadnejad, H., & Motasadizadeh, H. (2023) et al.,. pH-sensitive bilayer electrospun nanofibers based on ethyl cellulose and Eudragit S-100 as a dual delivery system for treatment of the burn wounds; preparation, characterizations, and in-vitro/in-vivo assessment. International Journal of Biological Macromolecules, 249, 126705. https://doi.org/10.1016/J.IJBIOMAC.2023.126705

Ansari, M., Sadarani, B., & Majumdar, A. (2019) et al.,. Colon targeted beads loaded with pterostilbene: Formulation, optimization, characterization and in vivo evaluation. Saudi Pharmaceutical Journal, 27(1), 71–81. https://doi.org/10.1016/J.JSPS.2018.07.021

Ao, L., Du, S., Yang, J., Jin, C., Jiang, K., Shang, L., Li, Y., Zhang, J., Zhu, L., Hu, Z., & Chu, J. (2022) et al.,. A novel composite of SnOx nanoparticles and SiO2@N-doped carbon nanofibers with durable lifespan for diffusion-controlled lithium storage. Journal of Alloys and Compounds, 897, 162703. https://doi.org/10.1016/J.JALLCOM.2021.162703

Arévalo-Pérez, R., Maderuelo, C., & Lanao, J. M. (2020) et al.,. Recent advances in colon drug delivery systems. Journal of Controlled Release, 327, 703–724. https://doi.org/10.1016/J.JCONREL.2020.09.026

Awad, A., Madla, C. M., McCoubrey, L. E., Ferraro, F., Gavins, F. K. H., Buanz, A., Gaisford, S., Orlu, M., Siepmann, F., Siepmann, J., & Basit, A. W. (2022) et al.,. Clinical translation of advanced colonic drug delivery technologies. Advanced Drug Delivery Reviews, 181. https://doi.org/10.1016/J.ADDR.2021.114076

Babapoor, A., Karimi, G., & Khorram, M. (2016) et al., . Fabrication and characterization of nanofiber-nanoparticle-composites with phase change materials by electrospinning. Applied Thermal Engineering, 99, 1225–1235. https://doi.org/10.1016/J.APPLTHERMALENG.2016.02.026

Bhowmick, M., Bhowmick, P., Sengodan, T., & Thangavel, S. (2015) et al., . DEVELOPMENT AND VALIDATION OF BIOANALYTICAL RP HPLC METHOD FOR THE ESTIMATION OF METOPROLOL TARTRATE IN RABBIT PLASMA AFTER TRANSDERMAL AND ORAL ADMINISTRATION: APPLICATION IN PHARMACOKINETIC STUDIES. Journal of Drug Delivery and Therapeutics, 5(4), 43–53. https://doi.org/10.22270/JDDT.V5I4.1118

Boyapally, H., Nukala, R. K., & Douroumis, D. (2009) et al., . Development and release mechanism of diltiazem HCl prolonged release matrix tablets. Drug Delivery, 16(2), 67–74. https://doi.org/10.1080/10717540802586220

Cai, X., Wang, X., He, M., Wang, Y., Lan, M., Zhao, Y., & Gao, F. (2021) et al., . Colon-targeted delivery of tacrolimus using pH-responsive polymeric nanoparticles for murine colitis therapy. International Journal of Pharmaceutics, 606. https://doi.org/10.1016/j.ijpharm.2021.120836

Campiglio, C. E., Ponzini, S., De Stefano, P., Ortoleva, G., Vignati, L., & Draghi, L. (2020) et al.,. Cross-Linking Optimization for Electrospun Gelatin: Challenge of Preserving Fiber Topography. Polymers 2020, Vol. 12, Page 2472, 12(11), 2472. https://doi.org/10.3390/POLYM12112472

Carvalho, S. G., dos Santos, A. M., Polli Silvestre, A. L., Tavares, A. G., Chorilli, M., & Daflon Gremião, M. P. (2023) et al.,. Multifunctional systems based on nano-in-microparticles as strategies for drug delivery: advances, challenges, and future perspectives. Expert Opinion on Drug Delivery, 20(9), 1231–1249. https://doi.org/10.1080/17425247.2023.2263360

Cetin, M., Atila, A., & Kadioglu, Y. (2010) et al.,. Formulation and In vitro Characterization of Eudragit® L100 and Eudragit® L100-PLGA Nanoparticles Containing Diclofenac Sodium. AAPS PharmSciTech, 11(3), 1250. https://doi.org/10.1208/S12249-010-9489-6

Chen, Q., Yang, Z., Liu, H., Man, J., Oladejo, A. O., Ibrahim, S., Wang, S., & Hao, B. (2024) et al.,. Novel Drug Delivery Systems: An Important Direction for Drug Innovation Research and Development. Pharmaceutics 2024, Vol. 16, Page 674, 16(5), 674. https://doi.org/10.3390/PHARMACEUTICS16050674

De Anda-Flores, Y., Carvajal-Millan, E., Campa-Mada, A., Lizardi-Mendoza, J., Rascon-Chu, A., Tanori-Cordova, J., Luisa Martínez-López, A., Ribeiro, B., B Pinto, R. J., Stana Kleinschek, K., Enrique Astiazarán Rosas No, G., & Rosas No, A. (2021) et al.,. Polysaccharide-Based Nanoparticles for Colon-Targeted Drug Delivery Systems. Polysaccharides 2021, Vol. 2, Pages 626-647, 2(3), 626–647. https://doi.org/10.3390/POLYSACCHARIDES2030038

Dos Santos, J., da Silva, G. S., Velho, M. C., & Beck, R. C. R. (2021) et al.,. Eudragit®: A Versatile Family of Polymers for Hot Melt Extrusion and 3D Printing Processes in Pharmaceutics. Pharmaceutics, 13(9). https://doi.org/10.3390/PHARMACEUTICS13091424

Duan, X., Chen, H. lan, & Guo, C. (2022) et al.,. Polymeric Nanofibers for Drug Delivery Applications: A Recent Review. Journal of Materials Science: Materials in Medicine 2022 33:12, 33(12), 1–18. https://doi.org/10.1007/S10856-022-06700-4

Éva Uhljar, L., Yuan Kan, S., Radacsi, N., Koutsos, V., Szabó-Révész, P., Ambrus, R., & Popa, M. (2021) et al.,. In vitro drug release, permeability, and structural test of ciprofloxacin-loaded nanofibers. Mdpi.Com. https://doi.org/10.3390/pharmaceutics13040556

Farhaj, S., Conway, B. R., & Ghori, M. U. (2023) et al.,. Nanofibres in Drug Delivery Applications. Fibers 2023, Vol. 11, Page 21, 11(2), 21. https://doi.org/10.3390/FIB11020021

Feng, K., Wei, Y., Hu, T., Linhardt, R., … M. Z.-T. in food science &, & 2020, undefined. (n.d.) et al.,. Colon-targeted delivery systems for nutraceuticals: A review of current vehicles, evaluation methods and future prospects. Elsevier. Retrieved June 14, 2024, from https://www.sciencedirect.com/science/article/pii/S0924224420304805

Feng, K., Wei, Y. shan, Hu, T. gen, Linhardt, R. J., Zong, M. hua, & Wu, H. (2020) et al.,. Colon-targeted delivery systems for nutraceuticals: A review of current vehicles, evaluation methods and future prospects. Trends in Food Science & Technology, 102, 203–222. https://doi.org/10.1016/J.TIFS.2020.05.019

Galkina, O. L., Ivanov, V. K., Agafonov, A. V., Seisenbaeva, G. A., & Kessler, V. G. (2015) et al.,. Cellulose nanofiber–titania nanocomposites as potential drug delivery systems for dermal applications. Journal of Materials Chemistry B, 3(8), 1688–1698. https://doi.org/10.1039/C4TB01823K

Gaydhane, M. K., Sharma, C. S., & Majumdar, S. (2023) et al.,. Electrospun nanofibres in drug delivery: advances in controlled release strategies. RSC Advances, 13(11), 7312–7328. https://doi.org/10.1039/D2RA06023J

Ghaderpour, A., Hoseinkhani, Z., Yarani, R., Mohammadiani, S., Amiri, F., & Mansouri, K. (2021) et al.,. Altering the characterization of nanofibers by changing the electrospinning parameters and their application in tissue engineering, drug delivery, and gene delivery systems. Polymers for Advanced Technologies, 32(5), 1924–1950. https://doi.org/10.1002/PAT.5242

Ghafoor, B., Aleem, A., Najabat Ali, M., & Mir, M. (2018) et al.,. Review of the fabrication techniques and applications of polymeric electrospun nanofibers for drug delivery systems. Journal of Drug Delivery Science and Technology, 48, 82–87. https://doi.org/10.1016/J.JDDST.2018.09.005

Goyal, R., Macri, L. K., Kaplan, H. M., & Kohn, J. (2016) et al.,. Nanoparticles and nanofibers for topical drug delivery. Journal of Controlled Release : Official Journal of the Controlled Release Society, 240, 77. https://doi.org/10.1016/J.JCONREL.2015.10.049

Hao, S., Wang, B., Wang, Y., Zhu, L., Wang, B., & Guo, T. (2013) et al.,. Preparation of Eudragit L 100-55 enteric nanoparticles by a novel emulsion diffusion method. Colloids and Surfaces B: Biointerfaces, 108, 127–133. https://doi.org/10.1016/J.COLSURFB.2013.02.036

Hiwrale, A., Bharati, S., Pingale, P., & Rajput, A. (2023) et al.,. Nanofibers: A current era in drug delivery system. Heliyon, 9(9), e18917. https://doi.org/10.1016/J.HELIYON.2023.E18917

Ibrahim, I. M. (2023). Advances in Polysaccharide-Based Oral Colon-Targeted Delivery Systems: The Journey So Far and the Road Ahead. Cureus, 15(1) et al.,. https://doi.org/10.7759/CUREUS.33636

Islam, M., Ang, B., Andriyana, A., Sciences, A. A.-S. A., & 2019, undefined. (2019) et al.,. A review on fabrication of nanofibers via electrospinning and their applications. Springer, 1(10). https://doi.org/10.1007/s42452-019-1288-4

Jarak, I., Silva, I., Domingues, C., Santos, A. I., Veiga, F., & Figueiras, A. (2022) et al.,. Nanofiber Carriers of Therapeutic Load: Current Trends. International Journal of Molecular Sciences, 23(15), 8581. https://doi.org/10.3390/IJMS23158581

Jelvehgari, M., Zakeri-Milani, P., Siahi-Shadbad, M. R., Loveymi, B. D., Nokhodchi, A., Azari, Z., & Valizadeh, H. (2010) et al.,. Development of pH-sensitive insulin nanoparticles using Eudragit L100-55 and chitosan with different molecular weights. AAPS PharmSciTech, 11(3), 1237–1242. https://doi.org/10.1208/S12249-010-9488-7

Ji, X., Li, R., Liu, G., Jia, W., Sun, M., Liu, Y., Luo, Y., & Cheng, Z. (2021) et al.,. Phase separation-based electrospun Janus nanofibers loaded with Rana chensinensis skin peptides/silver nanoparticles for wound healing. Materials & Design, 207, 109864. https://doi.org/10.1016/J.MATDES.2021.109864

Jiffrin, R., Razak, S. I. A., Jamaludin, M. I., Hamzah, A. S. A., Mazian, M. A., Jaya, M. A. T., Nasrullah, M. Z., Majrashi, M., Theyab, A., Aldarmahi, A. A., Awan, Z., Abdel-Daim, M. M., & Azad, A. K. (2022) et al.,. Electrospun Nanofiber Composites for Drug Delivery: A Review on Current Progresses. Polymers, 14(18), 3725. https://doi.org/10.3390/POLYM14183725

Journal, A. I., Rahmani, A., Bakhshayesh, D., Annabi, N., Khalilov, R., Akbarzadeh, A., Samiei, M., Alizadeh, E., Alizadeh-Ghodsi, M., Davaran, S., & Montaseri, A. (2023) et al.,. Nanofiber Scaffolds as Drug Delivery Systems Promoting Wound Healing. Pharmaceutics 2023, Vol. 15, Page 1829, 15(7), 1829. https://doi.org/10.3390/PHARMACEUTICS15071829

Kamble, P., Sadarani, B., Majumdar, A., & Bhullar, S. (2017) et al.,. Nanofiber based drug delivery systems for skin: A promising therapeutic approach. Journal of Drug Delivery Science and Technology, 41, 124–133. https://doi.org/10.1016/J.JDDST.2017.07.003

Khan, R. S., Rather, A. H., Wani, T. U., Rather, S. ullah, Abdal-hay, A., & Sheikh, F. A. (2022) et al.,. A comparative review on silk fibroin nanofibers encasing the silver nanoparticles as antimicrobial agents for wound healing applications. Materials Today Communications, 32, 103914. https://doi.org/10.1016/J.MTCOMM.2022.103914

Kochar, B., Kalasapudi, L., … N. U.-I. B., & 2021, undefined. (n.d.) et al.,. Systematic review of inclusion and analysis of older adults in randomized controlled trials of medications used to treat inflammatory bowel diseases. Academic.Oup.ComB Kochar, L Kalasapudi, NN Ufere, RD Nipp, AN Ananthakrishnan, CS RitchieInflammatory Bowel Diseases, 2021•academic.Oup.Com. Retrieved March 22, 2024, from https://academic.oup.com/ibdjournal/article-abstract/27/9/1541/6168363

Koutsopoulos, S., Unsworth, L. D., Nagai, Y., & Zhang, S. (2009) et al.,. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Proceedings of the National Academy of Sciences of the United States of America, 106(12), 4623–4628. https://doi.org/10.1073/PNAS.0807506106

Lam, P. L., & Gambari, R. (2014) et al.,. Advanced progress of microencapsulation technologies: In vivo and in vitro models for studying oral and transdermal drug deliveries. Journal of Controlled Release, 178(1), 25–45. https://doi.org/10.1016/J.JCONREL.2013.12.028

Lee, S. H., Bajracharya, R., Min, J. Y., Han, J. W., Park, B. J., & Han, H. K. (2020a) et al.,. Strategic Approaches for Colon Targeted Drug Delivery: An Overview of Recent Advancements. Pharmaceutics 2020, Vol. 12, Page 68, 12(1), 68. https://doi.org/10.3390/PHARMACEUTICS12010068

Lee, S. H., Bajracharya, R., Min, J. Y., Han, J. W., Park, B. J., & Han, H. K. (2020b) et al.,. Strategic Approaches for Colon Targeted Drug Delivery: An Overview of Recent Advancements. Pharmaceutics 2020, Vol. 12, Page 68, 12(1), 68. https://doi.org/10.3390/PHARMACEUTICS12010068

Liu, L., Yao, W., Rao, Y., Lu, X., & Gao, J. (2017) et al.,. pH-Responsive carriers for oral drug delivery: challenges and opportunities of current platforms. https://doi.org/10.1080/10717544.2017.1279238

Liu, T., Li, J., Li, X., Qiu, S., Ye, Y., Yang, F., & Zhao, H. (2019) et al.,. Effect of self-assembled tetraaniline nanofiber on the anticorrosion performance of waterborne epoxy coating. Progress in Organic Coatings, 128, 137–147. https://doi.org/10.1016/J.PORGCOAT.2018.11.033

Lopalco, A., Denora, N., Laquintana, V., Cutrignelli, A., Franco, M., Robota, M., Hauschildt, N., Mondelli, F., Arduino, I., & Lopedota, A. (2020) et al.,. Taste masking of propranolol hydrochloride by microbeads of EUDRAGIT® E PO obtained with prilling technique for paediatric oral administration. International Journal of Pharmaceutics, 574. https://doi.org/10.1016/J.IJPHARM.2019.118922

Luo, C. J., Nangrejo, M., & Edirisinghe, M. (2010) et al.,. A novel method of selecting solvents for polymer electrospinning. Polymer, 51(7), 1654–1662. https://doi.org/10.1016/J.POLYMER.2010.01.031

Luraghi, A., Peri, F., & Moroni, L. (2021a) et al.,. Electrospinning for drug delivery applications: A review. Journal of Controlled Release, 334, 463–484. https://doi.org/10.1016/J.JCONREL.2021.03.033

Luraghi, A., Peri, F., & Moroni, L. (2021b) et al.,. Electrospinning for drug delivery applications: A review. Journal of Controlled Release, 334, 463–484. https://doi.org/10.1016/j.jconrel.2021.03.033

Mehta, R., Chawla, A., Sharma, P., & Pawar, P. (2013) et al.,. Formulation and in vitro evaluation of Eudragit S-100 coated naproxen matrix tablets for colon-targeted drug delivery system. Journal of Advanced Pharmaceutical Technology & Research, 4(1), 31. https://doi.org/10.4103/2231-4040.107498

Miastkowska, M. A., Katarzyna, B.-W. ˛ A., Vandamme, T., Gao, Z., Wang, Q., Yao, Q., & Zhang, P. (2021) et al.,. Application of Electrospun Nanofiber Membrane in the Treatment of Diabetic Wounds. Pharmaceutics 2022, Vol. 14, Page 6, 14(1), 6. https://doi.org/10.3390/PHARMACEUTICS14010006

Mirzaeei, S., Taghe, S., Asare-Addo, K., & Nokhodchi, A. (2021) et al.,. Polyvinyl Alcohol/Chitosan Single-Layered and Polyvinyl Alcohol/Chitosan/Eudragit RL100 Multi-layered Electrospun Nanofibers as an Ocular Matrix for the Controlled Release of Ofloxacin: an In Vitro and In Vivo Evaluation. AAPS PharmSciTech, 22(5), 1–13. https://doi.org/10.1208/S12249-021-02051-5/TABLES/2

Naeem, M., Lee, J., Oshi, M. A., Cao, J., Hlaing, S. P., Im, E., Jung, Y., & Yoo, J. W. (2020) et al.,. Colitis-targeted hybrid nanoparticles-in-microparticles system for the treatment of ulcerative colitis. Acta Biomaterialia, 116, 368–382. https://doi.org/10.1016/J.ACTBIO.2020.09.017

Nakhaei, P., Margiana, R., Bokov, D. O., Abdelbasset, W. K., Jadidi Kouhbanani, M. A., Varma, R. S., Marofi, F., Jarahian, M., & Beheshtkhoo, N. (2021) et al.,. Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/FBIOE.2021.705886

Nanomed, J., Akhgari, A., Shakib, Z., & Sanati, S. (2017) et al.,. A review on electrospun nanofibers for oral drug delivery. Nanomedicine Journal, 4(4), 197–207. https://doi.org/10.22038/NMJ.2017.04.001

Nikam, A., Sahoo, P. R., Musale, S., Pagar, R. R., Paiva-Santos, A. C., & Giram, P. S. (2023) et al.,. A Systematic Overview of Eudragit® Based Copolymer for Smart Healthcare. Pharmaceutics, 15(2). https://doi.org/10.3390/PHARMACEUTICS15020587

Pasricha, R., & Sachdev, D. (2017) et al.,. Biological characterization of nanofiber composites. Nanofiber Composites for Biomedical Applications, 157–196. https://doi.org/10.1016/B978-0-08-100173-8.00007-7

Patole, V. C., & Pandit, A. P. (2018) et al.,. Mesalamine-loaded alginate microspheres filled in enteric coated HPMC capsules for local treatment of ulcerative colitis: in vitro and in vivo characterization. Journal of Pharmaceutical Investigation, 48(3), 257–267. https://doi.org/10.1007/S40005-017-0304-1/FIGURES/5

Patra, C. N., Priya, R., Swain, S., Kumar Jena, G., Panigrahi, K. C., & Ghose, D. (2017) et al.,. Pharmaceutical significance of Eudragit: A review. Future Journal of Pharmaceutical Sciences, 3(1), 33–45. https://doi.org/10.1016/J.FJPS.2017.02.001

Pignatello, R., Ricupero, N., Bucolo, C., Maugeri, F., Maltese, A., & Puglisi, G. (2006) et al.,. Preparation and characterization of Eudragit Retard nanosuspensions for the ocular delivery of cloricromene. AAPS PharmSciTech, 7(1), E192–E198. https://doi.org/10.1208/PT070127

Polini, A., & Yang, F. (2017) et al.,. Physicochemical characterization of nanofiber composites. Nanofiber Composites for Biomedical Applications, 97–115. https://doi.org/10.1016/B978-0-08-100173-8.00005-3

Reneker, D. H., Yarin, A. L., Zussman, E., & Xu, H. (2007) et al.,. Electrospinning of Nanofibers from Polymer Solutions and Melts. Advances in Applied Mechanics, 41, 43–346. https://doi.org/10.1016/S0065-2156(07)41002-X

Roodbar Shojaei, T., Hajalilou, A., Tabatabaei, M., Mobli, H., & Aghbashlo, M. (2019) et al.,. Characterization and Evaluation of Nanofiber Materials. Handbook of Nanofibers, 491–522. https://doi.org/10.1007/978-3-319-53655-2_15

Schoeller, J., Itel, F., Wuertz-Kozak, K., Fortunato, G., & Rossi, R. M. (2022) et al.,. pH-Responsive Electrospun Nanofibers and Their Applications. Polymer Reviews, 62(2), 351–399. https://doi.org/10.1080/15583724.2021.1939372

Shahriar, S. M. S., Mondal, J., Hasan, M. N., Revuri, V., Lee, D. Y., & Lee, Y. K. (2019) et al.,. Electrospinning Nanofibers for Therapeutics Delivery. Nanomaterials, 9(4). https://doi.org/10.3390/NANO9040532

Shen, X., Yu, D., Zhu, L., Branford-White, C., White, K., & Chatterton, N. P. (2011) et al.,. Electrospun diclofenac sodium loaded Eudragit® L 100-55 nanofibers for colon-targeted drug delivery. International Journal of Pharmaceutics, 408(1–2), 200–207. https://doi.org/10.1016/J.IJPHARM.2011.01.058

Singh, B., Kim, K., & Park, M. H. (2021a) et al.,. On-Demand Drug Delivery Systems Using Nanofibers. Nanomaterials, 11(12). https://doi.org/10.3390/NANO11123411

Singh, B., Kim, K., & Park, M. H. (2021b) et al.,. On-Demand Drug Delivery Systems Using Nanofibers. Nanomaterials 2021, Vol. 11, Page 3411, 11(12), 3411. https://doi.org/10.3390/NANO11123411

Singh, G., delivery, R. P.-D., & 2016, undefined. (2016) et al.,. Atazanavir-loaded Eudragit RL 100 nanoparticles to improve oral bioavailability: optimization and in vitro/in vivo appraisal. Taylor & FrancisG Singh, RS PaiDrug Delivery, 2016•Taylor & Francis, 23(2), 532–539. https://doi.org/10.3109/10717544.2014.930760

Singh, J., & Nayak, P. (2023) et al.,. pH-responsive polymers for drug delivery: Trends and opportunities. Journal of Polymer Science, 61(22), 2828–2850. https://doi.org/10.1002/POL.20230403

Sofi, H. S., Abdal-hay, A., Ivanovski, S., Zhang, Y. S., & Sheikh, F. A. (2020) et al.,. Electrospun nanofibers for the delivery of active drugs through nasal, oral and vaginal mucosa: Current status and future perspectives. Materials Science and Engineering: C, 111, 110756. https://doi.org/10.1016/J.MSEC.2020.110756

Sun, H., Liu, D., Li, Y., Tang, X., of, Y. C.-I. J., & 2014, undefined. (2014) et al.,. Preparation and in vitro/in vivo characterization of enteric-coated nanoparticles loaded with the antihypertensive peptide VLPVPR. Taylor & FrancisH Sun, D Liu, Y Li, X Tang, Y CongInternational Journal of Nanomedicine, 2014•Taylor & Francis, 9(1), 1709–1716. https://doi.org/10.2147/IJN.S56092

Talebi, N., Lopes, D., Lopes, J., Macário-Soares, A., Dan, A. K., Ghanbari, R., Kahkesh, K. H., Peixoto, D., Giram, P. S., Raza, F., Veiga, F., Sharifi, E., Hamishehkar, H., & Paiva-Santos, A. C. (2023) et al.,. Natural polymeric nanofibers in transdermal drug delivery. Applied Materials Today, 30, 101726. https://doi.org/10.1016/J.APMT.2022.101726

Tan, E. P. S., & Lim, C. T. (2006) et al.,. Mechanical characterization of nanofibers – A review. Composites Science and Technology, 66(9), 1102–1111. https://doi.org/10.1016/J.COMPSCITECH.2005.10.003

Tayel, S. A., El-Nabarawi, M. A., Tadros, M. I., & Abd-Elsalam, W. H. (2013) et al.,. Positively charged polymeric nanoparticle reservoirs of terbinafine hydrochloride: Preclinical implications for controlled drug delivery in the aqueous humor of rabbits. AAPS PharmSciTech, 14(2), 782–793. https://doi.org/10.1208/S12249-013-9964-Y

Thakral, S., Thakral, N. K., & Majumdar, D. K. (2013) et al.,. Eudragit: a technology evaluation. Expert Opinion on Drug Delivery, 10(1), 131–149. https://doi.org/10.1517/17425247.2013.736962

Turanlı, Y., Tort, S., & Acartürk, F. (2019) et al.,. Development and characterization of methylprednisolone loaded delayed release nanofibers. Journal of Drug Delivery Science and Technology, 49, 58–65. https://doi.org/10.1016/J.JDDST.2018.10.031

Venmathi Maran, B. A., Jeyachandran, S., & Kimura, M. (2024) et al.,. A Review on the Electrospinning of Polymer Nanofibers and Its Biomedical Applications. Journal of Composites Science 2024, Vol. 8, Page 32, 8(1), 32. https://doi.org/10.3390/JCS8010032

Vlachou, M., Kikionis, S., Siamidi, A., Kyriakou, S., Tsotinis, A., Ioannou, E., & Roussis, V. (2019) et al.,. Development and Characterization of Eudragit®-Based Electrospun Nanofibrous Mats and Their Formulation into Nanofiber Tablets for the Modified Release of Furosemide. Pharmaceutics 2019, Vol. 11, Page 480, 11(9), 480. https://doi.org/10.3390/PHARMACEUTICS11090480

Wang, J., & Windbergs, M. (2019) et al.,. Controlled dual drug release by coaxial electrospun fibers – Impact of the core fluid on drug encapsulation and release. International Journal of Pharmaceutics, 556, 363–371. https://doi.org/10.1016/J.IJPHARM.2018.12.026

Wang, X., Yu, D., Li, X., … S. B.-I. journal of, & 2015, undefined. (n.d.) et al.,. Electrospun medicated shellac nanofibers for colon-targeted drug delivery. Elsevier. Retrieved June 14, 2024, from https://www.sciencedirect.com/science/article/pii/S0378517315005062

Wang, Y., Kong, L., Li, P., Yang, Z., Peng, Z., Li, S., & Wang, Q. (2015) et al.,. Microencapsulation of coupled folate and chitosan nanoparticles for targeted delivery of combination drugs to colon. Taylor & FrancisP Li, Z Yang, Y Wang, Z Peng, S Li, L Kong, Q WangJournal of Microencapsulation, 2015•Taylor & Francis, 32(1), 1–6. https://doi.org/10.3109/02652048.2014.944947

Wildy, M., & Lu, P. (2023) et al.,. Electrospun Nanofibers: Shaping the Future of Controlled and Responsive Drug Delivery. Materials, 16(22). https://doi.org/10.3390/MA16227062

Xu, Q., Zhang, N., Qin, W., Liu, J., Jia, Z., & Liu, H. (2013) et al.,. Preparation, in vitro and in vivo evaluation of Budesonide loaded core/shell nanofibers as oral colonic drug delivery system. Journal of Nanoscience and Nanotechnology, 13(1), 149–156. https://doi.org/10.1166/JNN.2013.6920

Xuan, L., Ju, Z., Skonieczna, M., Zhou, P. K., & Huang, R. (2023) et al.,. Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm, 4(4). https://doi.org/10.1002/MCO2.327

Xue, J., Wu, T., Dai, Y., & Xia, Y. (2019) et al.,. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical Reviews, 119(8), 5298–5415. https://doi.org/10.1021/ACS.CHEMREV.8B00593

Yang, Z., Wang, C., & Lu, X. (2019) et al.,. Nanofibrous Materials. Electrospinning: Nanofabrication and Applications, 53–92. https://doi.org/10.1016/B978-0-323-51270-1.00003-0

Zhang, Y., Du, X., Zhang, Y., Li, G., Cai, C., Xu, J., & Tang, X. (2014) et al.,. Thiolated Eudragit-based nanoparticles for oral insulin delivery: Preparation, characterization, and evaluation using intestinal epithelial cells in vitro. Macromolecular Bioscience, 14(6), 842–852. https://doi.org/10.1002/MABI.201300515

Downloads

Published

10-04-2025

Issue

Section

Review Articles