Papain: a promising enzyme with bactericidal, anti-inflammatory action for dermal and dental applications

Authors

  • Maria Dospra (1) Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., Panepistimioupolis Egaleo Park, 12243 Athens, Greece
  • PANAGOULA PAVLOU Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., Panepistimioupolis Egaleo Park, 12243 Athens, Greece
  • Athanasia Varvaresou (1) Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., Panepistimioupolis Egaleo Park, 12243 Athens, Greece
  • Spyridon Papageorgiou (1) Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., Panepistimioupolis Egaleo Park, 12243 Athens, Greece

DOI:

https://doi.org/10.60988/p.v36i3.50

Keywords:

papain, enzyme, wound healing, dental application

Abstract

The management of acute and chronic wounds has a significant financial, clinical, social impact on healthcare and affects the living conditions of over 2.5% of the population. Despite the numerous treatments, already established, for both chronic and acute wounds, their management continues to constitute an urgent and burdensome issue in modern times, necessitating the development of novel therapies. The most powerful catalysts found in nature are enzymes. Proteases are among the most highly lucrative commercial enzymes and account for around 60% of the entire enzyme market. The first protein to be obtained from papaya and the first cysteine protease whose three-dimensional X-ray analysis showed its structure was papain. As a result, cysteine proteases, a major category of essential substances, are acknowledged as papain-like proteins. Thus, papaya (Carica papaya) and mountain papaya (Vasconcellea cundinamarcensis) both contain the cysteine protease enzyme known as papain, also referred to as papaya proteinase I. This mini review's objective is to look into the literature for healing properties of papain attributed to its bactericidal and anti-inflammatory action.

References

Tacias-Pascacio, V. G., Morellon-Sterling, R., Castañeda-Valbuena, D., Berenguer-Murcia, Á., Kamli, M. R., Tavano, O., & Fernandez-Lafuente, R. (2021). Immobilization of papain: A review. International journal of biological macromolecules, 188, 94–113. https://doi.org/10.1016/j.ijbiomac.2021.08.016

Britannica, T. Editors of Encyclopaedia (2018, June 1). papain. Encyclopedia Britannica. https://www.britannica.com/science/papain

Kondratiuk, T., Beregova, T., Ostapchenko, L., Srivastava, Arun Kumar, Singh, Vinay Kumar, Elbayaa, Rasha Y., Abdelwahab, Ibrahim A., Youssef, Fadia S., & Ashour, Mohamed L. (2017). Antimicrobial activity of natural substances. JBBooks, Joanna Bródka. https://doi.org/10.5281/zenodo.1014019

National Center for Biotechnology Information (NCBI) (2022). PubChem Protein Summary for ProteinBlob P00784, Papain (papaya). Retrieved from https://pubchem.ncbi.nlm.nih.gov/protein/P00784.

de Araújo, I. C., Defune, E., Abbade, L. P., Miot, H. A., Bertanha, M., de Carvalho, L. R., Ferreira, R. R., & Yoshida, W. B. (2017). Fibrin gel versus papain gel in the healing of chronic venous ulcers: A double-blind randomized controlled trial. Phlebology, 32(7), 488–495. https://doi.org/10.1177/0268355516664808

Figueiredo Azevedo, F., Santanna, L. P., Bóbbo, V. C., Libert, E. A., Araújo, E. P., Abdalla Saad, M., & Lima, M. H. M. (2017). Evaluating the Effect of 3% Papain Gel Application in Cutaneous Wound Healing in Mice. Wounds : a compendium of clinical research and practice, 29(4), 96–101.

Chen, Y. Y., Lu, Y. H., Ma, C. H., Tao, W. W., Zhu, J. J., & Zhang, X. (2017). A novel elastic liposome for skin delivery of papain and its application on hypertrophic scar. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 87, 82–91. https://doi.org/10.1016/j.biopha.2016.12.076

Trevisol, T. C., Henriques, R. O., Cesca, K., Souza, A. J. A., & Furigo, A., Jr (2022). In vitro effect on the proteolytic activity of papain with proteins of the skin as substrate. International journal of cosmetic science, 44(5), 542–554. https://doi.org/10.1111/ics.12805

Sontakke, P., Jain, P., Patil, A. D., Biswas, G., Yadav, P., Makkar, D. K., Jeph, V., & Sakina, B. P. (2019). A comparative study of the clinical efficiency of chemomechanical caries removal using Carie-Care gel for permanent teeth of children of age group of 12-15 years with that of conventional drilling method: A randomized controlled trial. Dental research journal, 16(1), 42–46.

Mahdi, Mafaz & Haidar, Aseel. (2019). Evaluation of the Efficacy of Caries Removal Using Papain Gel (Brix 3000) and Smart Preparation Bur (in vivo Comparative Study). Journal of Pharmaceutical Sciences and Research. 11. 444-449.

Maru, V. P., Padawe, D., Tripathi, V. P., Takate, V., Dighe, K., & Vishwanath Dalvi, S. (2020). Reduction in Bacterial Loading using Papacarie and Carisolv as an Irrigant in Pulpectomized Primary Molars - A Preliminary Report. The Journal of clinical pediatric dentistry, 44(3), 174–179. https://doi.org/10.17796/1053-4625-44.3.7

Anselmo, G. G., Tortamano, A. C. A. C., Gonçalves, M. L. L., Leal-Rossi, A., Godoy-Miranda, B. A., Oliveira, M. R. C., Oliveira, P. H. C., Alves, C. B., Bussadori, S. K., & Prates, R. A. (2020). Antimicrobial photodynamic chemotherapy mediated by PapaMBlue on chronic periodontal disease: Study protocol for a randomized, blind, controlled trial. Medicine, 99(6), e18854. https://doi.org/10.1097/MD.0000000000018854

Sawierucha, J., Posset, M., Hähnel, V., Johnson, C. L., Hutchinson, J. A., & Ahrens, N. (2018). Comparison of two column agglutination tests for red blood cell antibody testing. PloS one, 13(12), e0210099. https://doi.org/10.1371/journal.pone.0210099

Bawazer, L. A., , Ihli, J., , Levenstein, M. A., , Jeuken, L. J. C., , Meldrum, F. C., , & McMillan, D. G. G., (2018). Enzymatically-controlled biomimetic synthesis of titania/protein hybrid thin films. Journal of materials chemistry. B, 6(23), 3979–3988. https://doi.org/10.1039/c8tb00381e

Agrawal, N., Pathak, S., & Goyal, A. (2022). Potential Papain-like Protease Inhibitors Against COVID-19: A Comprehensive In Silico Based Review. Combinatorial chemistry & high throughput screening, 25(11), 1838–1858. https://doi.org/10.2174/1386207325666211122123602

Varca, G. H., Kadlubowski, S., Wolszczak, M., Lugão, A. B., Rosiak, J. M., & Ulanski, P. (2016). Synthesis of papain nanoparticles by electron beam irradiation - A pathway for controlled enzyme crosslinking. International journal of biological macromolecules, 92, 654–659. https://doi.org/10.1016/j.ijbiomac.2016.07.070

Lima, C. S. A., Varca, J. P. R. O., Nogueira, K. M., Fazolin, G. N., Freitas, L. F., Souza, E. W., Lugão, A. B., & Varca, G. H. C. (2020). Semi-Solid Pharmaceutical Formulations for the Delivery of Papain Nanoparticles. Pharmaceutics, 12(12), 1170. https://doi.org/10.3390/pharmaceutics12121170

Published

31-10-2024

Issue

Section

Review Articles