Application of Molecular Docking and Drug-Likeness Prediction for the Discovery of New Antidiabetic Agents
DOI:
https://doi.org/10.60988/pj.v36i1.45Keywords:
Type 2 diabetes, alpha glucosidase, molecular docking approach, FlexX, drug likeness properties.Abstract
Type 2 diabetes mellitus is a severe and increasingly prevalent disease that is considered as a serious public health. The purpose of this study was to identify novel and more efficient alpha glucosidase inhibitors using molecular docking approach and to determine the mode of interaction during the binding of those inhibitors to the enzyme.
The molecular docking method using the active site of alpha glucosidase and the drug likeness prediction were successful in identifying new products that were predicted to have a high negative binding energy to the target protein compare to the reference drug, acarbose. The compounds 6-O-[4-O-[4-[[(1S)-4beta,5alpha,6beta-Trihydroxy-3-(hydroxymethyl)-2-cyclo-hexene-1beta-yl]amino]-4,6-dideoxy-alpha-D-glucopyranosyl]-alpha-D-glucopyrano-syl]-L-ascorbic acid (CID101184779) and methyl alpha-R-acarviosinide (CID102067844) are the best, they showed excellent in silico activity with energy interaction of -49.1218 kJ/mol and -45.8468 kJ/mol respectively. The interactions that govern the complexes alpha glucosidase-proposed products stability are principally hydrogen bonds. These compounds were predicted to have satisfying drug likeness properties, they can serve as leads for further type 2 diabetes treatment.
References
World Health Organization. Diabetes, [cited May 2022]. Available from Internet: https://www.who.int/news-room/fact-sheets/detail/diabetes.
Liu S.K., Hao H., Bian Y., Ge Y.X., Lu S., Xie H.X., Wang K.M., Tao H., Yuan C., Zhang J., Zhang J., Jiang C.S., Zhu K. Discovery of New α-Glucosidase Inhibitors: Structure-Based Virtual Screening and Biological Evaluation. Front.Chem. 9, 639279, 2021.
International Diabetes Federation. (2017). ATLAS du diabète de FID. 8eme ed. Brussels, International Diabetes Federation.
Al-Lawati J.A. Diabetes Mellitus: A Local and global public health emergency!. Oman Med. J. 32(3), 177-179, 2017.
Zeng Z., Yin X., Wang X., Yang W., Liu X., Hong Y. Synthesis of water soluble pentacyclic dihydroxyterpene carboxylic acid derivatives coupled amino acids and their inhibition activities on α-glucosidase. Bioorg. Chem. 86, 277-287, 2019.
World Health Organization, [cited May 2022]. Available from Internet: https://www.who.int/news-room/fact-sheets/detail/diabetes.
American Diabetes Association. Standards of Medical Care in Diabetes—2018 Abridged for Primary Care Providers. Clin. Diabetes. 36(1), 14–37, 2018.
Żuchnik M., Rybkowska A., Szczuraszek P., Szczuraszek H., Bętkowska P., Radulski J., Tomkiewicz M., Paluch M., Licak G., Olko P. Type 2 diabetes - factors of occurrence and its complications. Quality in Sport. 10(1), 32-40, 2023.
Kautzky-Willer A., Harreiter J., Pacini G. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr. Rev. 37(3), 278–316, 2016.
Clement M., Harvey B., Rabi D.M., Roscoe R.S., Sherifali, D. Organisation des soins du diabète. Canadian Journal of Diabetes. 37, 381-387, 2013.
Kautzky-Willer A., Leutner M., Harreiter J. Sex differences in type 2 diabetes. Diabetologia. 66, 986–1002, 2023.
Butt S.M. Management and Treatment of Type 2 Diabetes. International Journal of Computations, Information and Manufacturing. 2(1), 15-27, 2022.
Bailey C.J., Day C. Treatment of type 2 diabetes: future approaches. British Medical Bulletin. 126, 123-137, 2018.
Kim J.H., Kim H.Y., Jin C.H. Mechanistic investigation of anthocyanidin derivatives as α-glucosidase inhibitors. Bioorg. Chem. 87, 803-809, 2019.
Chiba S. (1988). Amyloglycosidase. Handbook of Amylases and related enzymes ed. Oxford, U.K, The Amylase Research Society of Japan, Pergamum Press.
Standl E., Schnell O. Alpha-glucosidase inhibitors 2012 - cardiovascular considerations and trial evaluation. Diab. Vasc. Dis. Res. 9, 163–169, 2012.
Chiasson J.L., Josse R.G., Gomis R., Hanefeld M. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet. 359(9323), 2072-2077, 2002.
Hossain U., Das A.K., Ghosh S., Sil P.C. An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food Chem. Toxicol. 145, 111738, 2020.
Clissold S. Acarbose: A Preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential. Drugs. 35(3), 214-43, 1988.
Dalsgaard N.B., Gasbjerg L.S., Helsted M.M., Hansen L.S, Hansen N.L., Skov-Jeppesen K., Hartmann B., Holst J.J., Vilsboll T., Knop F.K. Acarbose diminishes postprandial suppression of bone resorption in patients with type 2 diabetes. Bone. 170(5), 116687, 2023.
Zothantluanga J.H., Chetia D. A beginner’s guide to molecular docking. Sciences of Phytochemistry. 1(2), 37-40, 2022.
Sagheer O.M., Ahmed M.S., Jwaid M.M., Alkhafaje Z., Al-hussaniy H.A., Al-Tameemi Z.S. The development of molecular docking and molecular dynamics and their application in the field of chemistry and computer simulation. Journal of medical pharmaceutical and allied sciences. 12, 5552–5562, 2023.
Aydın S.G. Review on molecular modelling and docking. SAR Journal - Science and Research. 5(4), 206-210, 2022.
Ahmad S., Singh S., Srivastava M.R., Shukla S., Rai S., Shamsi A.S. Molecular docking simplified: Literature review. Adv.Med. Dental Health Sci. 4 (4), 37-44, 2021.
Muhammed M.T., Aki-Yalcin E. Molecular docking: principles, advances, and its applications in drug discovery. Lett. Drug Des.Discov. 20, 1-16, 2022.
Kontoyianni M. Docking and virtual screening in drug discovery. Methods Mol. Biol. 1647, 255-266, 2017.
Zothantluanga J.H., Gogoi N., Shakya A., Chetia D., Lalthanzara H. Computational guided identification of potential leads from Acacia pennata (L.) Willd. as inhibitors for cellular entry and viral replication of SARS-CoV-2. Futur. J. Pharm. Sci. 7, 201, 2021.
Ferreira L.G., Dos Santos R.N., Oliva G., Andricopulo A.D. Molecular docking and structure-based drug design strategies. Molecules. 20(7), 13384-421, 2015.
Mohan V., Gibbs A.C., Cummings M.D., Jaeger E.P., DesJarlais R.L. Docking: Successes and challenges. Curr. Pharm. Des. 11(3), 323-333, 2005.
Gangwal R.P., Damre M.V., Das N.R., Dhoke G.V., Bhadauriya A., Varikoti R.A., Sharma S.S., Sangamwar A.T. Structure based virtual screening to identify selective phosphodiesterase 4B inhibitors. J. Mol. Graph. Model. 57, 89-98, 2015.
Rarey M., Kramer B., Lengauer T., Klebe G. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261, 470-489, 1996.
Nagare S., Lokhande K., Swamy K.V. Docking and simulation studies on cyclin D/CDK4 complex for targeting cell cycle arrest in cancer using flavanone and its congener. J. Mol. Model. 29(4), 90, 2023.
Tagami T., Yamashita K., Okuyama M., Mori H., Yao M., Kimura A. Molecular basis for the recognition of long-chain substrates by plant & alpha-glucosidase. J. Biol. Chem. 288, 19296-19303, 2013.
Al Azzam K.M. SwissADME and pkCSM Webservers predictors: an integrated online platform for accurate and comprehensive predictions for in silico ADME/T properties of artemisinin and its derivatives. Complex Use of Mineral Resources. 325(2), 14-21, 2023.
Mvondo J.G.M., Matondo A., Mawete D.T., Bambi S.M.N., Mbala B.M., Lohohola P.O. In silico ADME/T properties of quinine derivatives using SwissADME and pkCSM Webservers. Int. J.Trop.l Dis. Health. 42(11), 1-12, 2021.
Pehlivan M. PreADMET supported in silico prediction results for possible drug characteristics, toxicity and ADME for flavocillin, [cited January 2023]. Available from Internet: https:// preadmet.webservice.bmdrc.org/toxicity/.
Dandagvhal K., Chatpalliwar V. In silico Characterization, ADMET prediction and molecular docking studies of few 2/3 carboxylate-4/5/6-monosubstitued indole derivatives as potential GSK-3β inhibitors. Int. J.Health Sci. 6(S3), 12193-12212, 2022.
Hioual K.S., Chikhi A., Bensegueni A., Merzoug A., Boucherit H., Teniou S., Mokrani E.H., Merabti B. Successful challenge: A key step in infectious diseases treatment using computer-aided drug design. Int. J. Biol. Sci. App. 1(1), 11-14, 2014.
López-Camacho E., García-Godoy M.J., García-Nieto J., Nebro A.J., Aldana-Montes J.F. (2016) A New Multi-objective approach for molecular docking based on RMSD and binding energy. In: Boton-Fernandez M., Martin-vide C., Santander-Jimenez S., Vega-Rodriguez M. Algorithms for computational biology. eds. Lecture Notes in Computer Science. Springer, Cham, vol. 9702.
Buckley M.E., Ndukwe A.R.N., Nair P.C., Rana S., Fairfull-Smith K.E., Gandhi N.S. Comparative assessment of docking programs for docking and virtual screening of ribosomal oxazolidinone antibacterial agents. Antibiotics. 12(3), 463, 2023.
Grosdidier A. Conception d’un logiciel de docking et applications dans la recherche de nouvelles molécules actives. PhD Thesis, Joseph Fourier University: France, 2007.
Kimani N.M., Ochieng C.O., Ogutu M.D., Yamo K.O., Onyango J.O., Santos C.B.R. Inhibition kinetics and theoretical studies on Zanthoxylum chalybeum Engl. Dual inhibitors of α-glucosidase and α-amylase. J. Xenobiot. 13,102–120, 2023.