In Vitro and In Vivo Determination of Antimicrobial Activity of Mouthwash Solutions against Resident and Pathological Oral Microflora
DOI:
https://doi.org/10.60988/p.v36i4.43Keywords:
mouthwash, antimicrobial properties, oral microfloraAbstract
The aim of this study was to investigate the bactericidal properties of four commercially available antiseptic mouthwashes containing chlorhexidine, cetylpyridinium chloride, alcohol with essential oils, propolis, menthol, xylitol and hydroxyapatite nanoparticles. We conducted a series of in vitro studies to monitor the antimicrobial properties of four mouthwashes with different active ingredients against representatives of the normal oral microflora (S. mutans ATCC 35668), and potential pathogenic and conditionally pathogenic bacteria (S. pneumoniae ATCC49619 , S. epidermidis ATCC12228, S. aureus ATCC 29213). In the second stage, we conducted in vivo tests with 24 volunteers, tracking the dynamics of the bactericidal effects of the four mouthwashes on the normal aerobic and facultatively anaerobic oral microflora. All mouthwashes demonstrated antimicrobial activity against Gram-positive bacteria tested. In most of the cases, an inhibitory effect was observed at all concentrations tested. Exceptions were mouthwash MW4 (P+M) mouthwash against S. mutans – MIC 1:2 and MW3 (HAN+X) against S. epidermidis ATCC12228– MIC 1:2. The results of our research show that the combinations of chlorhexidine digluconate + cetylpyridinium chloride and alcohol + essential oils have the most powerful antimicrobial action against aerobic and facultatively anaerobic oral microflora. With these combinations, we observed complete inhibition of microbial growth in a minimum of 30 minutes, after which the CFU/mL gradually increased, but within 8 hours of follow-up did not reach the initial baseline value (sample 0). Mouthwashes containing combinations of chlorhexidine digluconate/cetylpyridinium chloride, alcohol/essential oils, hydroxyapatite nanoparticles/xylitol and propolis/mentha viridis oil have strong antimicrobial effects against S. aureus ATCC 29213, S. mutans ATCC 35668, S. pneumoniae ATCC49619, and S. epidermidis ATCC12228– MICs from 1:2 to ≥1:8.
References
Ghapanchi J., Lavaee F., Moattari A., Shakib M. The antibacterial effect of four mouthwashes against streptococcus mutans and escherichia coli. JPMA. The Journal of the Pakistan Medical Association. 2015 Apr;65(4):350-353. PMID: 25976564.
Lasserre J.F., Brecx M.C., Toma S. Oral Microbes, Biofilms and Their Role in Periodontal and Peri-Implant Diseases. Materials (Basel). 2018 Sep 22;11(10):1802. doi: 10.3390/ma11101802. PMID: 30248991; PMCID: PMC6213094.
Latimer J., Munday J.L., Buzza K.M., Forbes S., Sreenivasan P.K., McBain A.J. Antibacterial and anti-biofilm activity of mouthrinses containing cetylpyridinium chloride and sodium fluoride. BMC Microbiol. 2015 Aug 21;15:169. doi: 10.1186/s12866-015-0501-x. PMID: 26293609; PMCID: PMC4546200.
Parashar A. Mouthwashes and their use in different oral conditions. Sch J Dent Sci. 2015; 2:186–91.
Tartaglia G.M., Tadakamadla S.K., Connelly S.T., Sforza C., Martín C. Adverse events associated with home use of mouthrinses: a systematic review. Ther Adv Drug Saf. 2019 Sep 23;10:2042098619854881. doi: 10.1177/2042098619854881. PMID: 31579502; PMCID: PMC6759706.
Sreenivasan P.K., Haraszthy V.I., Zambon J.J. Antimicrobial efficacy of 0·05% cetylpyridinium chloride mouthrinses. Lett Appl Microbiol. 2013; 56(1):14-20.
Quintas V., Prada-López I., Carreira M.J., Suárez-Quintanilla D., Balsa-Castro C., Tomás I. In Situ Antibacterial Activity of Essential Oils with and without Alcohol on Oral Biofilm: A Randomized Clinical Trial. Front Microbiol. 2017; 23;8:2162.
Kasuga Y., Ikenoya H., Okuda K. Bactericidal effects of mouth rinses on oral bacteria. The Bulletin of Tokyo Dental College. 1997; 38(4): 297-302.
Balbuena L., Stambaugh K.I., Ramirez S.G., Yeager C. Effects of topical oral antiseptic rinses on bacterial counts of saliva in healthy human subjects. Otolaryngol Head Neck Surg. 1998; 118(5): 625-9.
Fornell J., Sundin Y., Lindhe J. Effect of listerine on dental plaque and gingivitis. Scand J Dent Res. 2007; 83(1): 18-25.
Aneja K.R., Joshi R., Sharma C. The antimicrobial potential of ten often used mouthwashes against four dental caries pathogens. Jundishapur J Microbiol. 2010; 3(1): 15-27.
Trahan L., Néron S., Bareil M. Intracellular xylitol-phosphate hydrolysis and efflux of xylitol in Streptococcus sobrinus. Oral Microbiol Immunol. 1991; 6(1):41-50.
Roberts M.C., Riedy C.A., Coldwell S.E., Nagahama S., Judge K., Lam M., Kaakko T., Castillo J.L., Milgrom P. How xylitol-containing products affect cariogenic bacteria. J Am Dent Assoc. 2002; 133(4):435-41; quiz 492-3.
Tanzer J.M., Thompson A., Wen Z.T., Burne R.A. Streptococcus mutans: fructose transport, xylitol resistance, and virulence. J Dent Res. 2006; 85(4):369-73.
Jeddy N., Ravi S., Radhika T., Sai Lakshmi L.J. Comparison of the efficacy of herbal mouth rinse with commercially available mouth rinses: A clinical trial. J Oral Maxillofac Pathol. 2018 Sep-Dec;22(3):332-334. doi: 10.4103/jomfp.JOMFP_303_18. PMID: 30651676; PMCID: PMC6306595.
Wagh V.D. Propolis: A Wonder Bees Product and Its Pharmacological Potentials. Adv Pharmacol Sci. 2013; 2013: 308249.
Chavarría-Bolaños D., Esparza-Villalpando V., Ramírez K. Antibacterial and antifungal capacity of three commercially available mouthwashes with different concentrations of chlorhexidine. Odovtos International Journal of Dental Sciences. 2022; 24(2), 69-80.
Shah S.V., Badakar C.M., Hugar S.M, et al. Antimicrobial Efficacy of Chlorhexidine and Herbal Mouth Rinse on Salivary Streptococcus mutans in Children with Mixed Dentition: A Randomized Crossover Study. Int J Clin Pediatr Dent. 2022; 15(1):99-103.
Da Silva N.B., Alexandria A.K., De Lima A.L., Claudino L.V., De Oliveira Carneiro T.F., Da Costa A.C., Valença A.M., Cavalcanti A.L. In vitro antimicrobial activity of mouth washes and herbal products against dental biofilm-forming bacteria. Contemp Clin Dent. 2012 Jul;3(3):302-5.
Araújo I.J.S., Carvalho M.S., Oliveira T.R., Puppin-Rontani R.M., Höfling J.F., Mattos-Graner R.O., et al. Antimicrobial activity of mouth rinses against bacteria that initially colonizes dental’s surface. Rev Odontol UNESP. 2019;48:e20180130.
de Miranda S.L.F., Damaceno J.T., Faveri M., Figueiredo L.C., Soares G.M.S., Feres M., Bueno-Silva B. In Vitro Antimicrobial Effect of Cetylpyridinium Chloride on Complex Multispecies Subgingival Biofilm. Brazilian Dental Journal (2020) 31(2): 103-108.
James P., Worthington H.V., Parnell C. Chlorhexidine mouth rinse as an adjunctive treatment for gingival health. Cochrane Database Syst Rev. 2017;3
Brookes Z.L.S., Bescos R., Belfield L.A., Ali K., Roberts A. Current uses of chlorhexidine for management of oral disease: a narrative review. J Dent. 2020 Dec;103:103497.
Alshehri F.A. The use of mouthwash containing essential oils (LISTERINE®) to improve oral health: A systematic review. The Saudi Dental Journal. 2018; 30(1):2-6.
Al Habashneh R., Qubain T.G., Alsalman W., Khader Y. The Effect of Listerine Mouthwash on Dental Plaque, Gingival Inflammation and C - reactive protein (CRP). Dentistry. 2014; 4(1): 191-5.
Haerian-Ardakani A., Rezaei M., Talebi-Ardakani M., Keshavarz Valian N., Amid R., Meimandi M., Esmailnejad A., Ariankia A. Comparison of Antimicrobial Effects of Three Different Mouthwashes. Iran J Public Health. 2015 Jul;44(7):997-1003. PMID: 26576378; PMCID: PMC4645771.
Tahan N. Effect of Different Mouth rinses on Salivary Bacteria in vivo. Dissertation available on: https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/28038.
Limeback H., Enax J., Meyer F. Biomimetic hydroxyapatite and caries prevention: A systematic review and meta-analysis. Can J Dent Hyg. 2021; 55:148–9.
O’Hagan-Wong K., Enax J., Meyer F., Ganss B. The use of hydroxyapatite toothpaste to prevent dental caries. Odontology. 2022; 110:223–30. https://doi.org/10.1007/s10266-021-00675-4.
Amaechi B.T., AbdulAzees P.A., Okoye L.O., Meyer F., Enax J. Comparison of hydroxyapatite and fluoride oral care gels for remineralization of initial caries: A pH-cycling study. BDJ Open. 2020; 6:9.
Amaechi B.T., Phillips T.S., Evans V., Ugwokaegbe C.P., Luong M.N., Okoye L.O., Meyer F., Enax J. The potential of hydroxyapatite toothpaste to prevent root caries: A pH-cycling study. Clin Cosmet Investig Dent. 2021; 13, 315–324.
Kensche A., Holder C., Basche S., Tahan N., Hannig C., Hannig M. Efficacy of a mouthrinse based on hydroxyapatite to reduce initial bacterial colonisation in situ. Arch. Oral Biol. 2017, 80, 18–26.
Cieplik F., Rupp C.M., Hirsch S., Muehler D., Enax J., Meyer F., Hiller K.A., Buchalla W. Ca2+ release and buffering effects of synthetic hydroxyapatite following bacterial acid challenge. BMC Oral Health. 2020; 20:85.
Enax J., Amaechi B.T., Schulze zur Wiesche E., Meyer F. Overview on Adjunct Ingredients Used in Hydroxyapatite-Based Oral Care Products. Biomimetics. 2022; 7(4):250.
El-sayed S.R., El-Bayoumy S.Y., Mostafa M.H., EL-Malt M.A. Evaluation of the antimicrobial effect of propolis extract on oral microflora. Al-Azhar Dental Journal for Girls. 2016; 3(2):135-40.