Efficacy of antioxidant compounds in obesity and its associated comorbidities

Authors

  • Fani-Niki Varra Pharmacy Department, School of Health Sciences, Frederick University, Nicosia, Cyprus, 2.Department of Medicine, Democritus University of Thrace, 68100 Alexandroupoli, Greece
  • Stergios Gkouzgos 1Pharmacy Department, School of Health Sciences, Frederick University, Nicosia, Cyprus
  • Michail Varras Fourth Department of Obstetrics and Gynecology, "Elena Venizelou" General Hospital, Elena Venizelou Square, Ampelokipoi, 11521 Athens, Greece
  • Theodosis-Nobelos Panagiotis FREDERICK UNIVERSITY

DOI:

https://doi.org/10.60988/p.v36i2.38

Keywords:

Παχυσαρκία, Αντιοξειδωτικές Eνώσεις, Βιταμίνη E, Άλφα-λιποϊκό Οξύ, Αντιοξειδωτικά Ένζυμα

Abstract

Obesity is characterized by an excessive accumulation of body fat. It is a chronic metabolic disease caused by multiple factors and has become a worldwide epidemic for decades. It is associated with adverse alterations in adipose tissue endocrine and metabolic activity, which causes substantial increase in systemic oxidative stress (OS) mediated by elevated intracellular reactive oxygen species (ROS). The prolonged excess of ROS in cells promotes chronic low-grade inflammation in the body. The combination of OS and chronic inflammation plays a vital role in maintaining the obesity and is a risk factor that leads to the development of insulin resistance (IR), metabolic syndrome (MetS), type II diabetes mellitus (T2DM), cardiovascular disease, hypertension, dyslipidemia, nonalcoholic fatty liver disease (NAFLD), various cancers and other associated diseases. Because of the apparent role of over-expression of OS together with under-production of antioxidant mechanisms in the pathogenesis of obesity, there has been a growing interest in negating the pro-oxidant state in obesity in order to ameliorate obesity and associated comorbidities. The administration of various antioxidants compounds have been reported to have activities against obesity and related comorbidities via several mechanism. This review aims to highlight the therapeutic properties of vitamin E, vitamin C, alpha-lipoic acid, L-carnitine, coenzyme Q10, zinc, superoxide anion radical dismutases (SODs), catalase, glutathione peroxidase, N-acetylcysteine and carotenoids in negating OS of cells and ameliorating obesity and associated comorbidities. More specifically, this review will explore how these antioxidant compounds influence molecular signaling pathways to exhibit an antioxidant defense mechanism. Some of the anti-obesity mechanisms of these antioxidants include their ability to improve carbohydrate and lipid metabolism disorders in MetS and T2DM, to prevent endothelial integrity and to normalize the antioxidant status in the liver by preventing obesity-related NAFLD.

 

References

Varra F.N., Varra M., Varra V.K., Theodosis-Nobelos P. Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation-mediating treatment options. Mol. Med. Rep. 2024 (in press).

Hruby A., Manson J.E., Qi L., Malik V.S., Rimm E.B., Sun Q., Willet W.C., Hu F.B. Determinants and Consequences of Obesity. Am. J. Public Health. 106, 1656-1662, 2016.

Triantis C., Theodosis-Nobelos P., Asimakopoulou E., Spathis A. The gut microbiome and its association with mental disorders. Pharmakeftiki 33, 72-87, 2021.

Zaffarin A.S.M., Fern S., Hwei M., Hassan H., Alias E. Pharmacology and Pharmacokinetics of Vitamin E : Nanoformulations to Enhance Bioavailability. Int. J. Nanomedicine 15, 9961-9974, 2020.

Riccioni G., Bucciarelli T., Mancini B., Corradi F., Ilio C.D., Mattei P.A., D’Orazio N. Antioxidant vitamin supplementation in cardiovascular diseases. Ann. Clin. Lab. Sci. 37, 89-95, 2007.

Traber M.G., Atkinson J. Vitamin E, antioxidant and nothing more. Free Radic. Biol. Med. 43, 4-15, 2007.

Theodosis-Nobelos P., Papagiouvannis G., Rekka E.A. A review on vitamin e natural analogues and on the design of synthetic vitamin e derivatives as cytoprotective agents. Mini Rev Med Chem. 21, 10–22, 2021.

Tucker J.M., Townsend D.M. Alpha-tocopherol: roles in prevention and therapy of human disease. Biomed. Pharmacother. 59, 380-387, 2005.

Wallert M., Schmolz L., Galli F., Birringer M., Lorkowski S. Regulatory metabolites of vitamin E and their putative relevance for atherogenesis. Redox. Biol. 2, 495-503, 2014.

Uzick M., Patrick L. Cardiovascular disease: C-reactive protein and the inflammatory disease paradigm: HMG-CoA reductase inhibitors, alpha-tocopherol, red yeast rice, and olive oil polyphenols. A review of the literature. Altern Med Rev 6, 248-271, 2001.

Jiang Q. Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic. Biol. Med. 72.76-90.2014.

Cuenda A., Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim. Biophys. Acta 1773, 1358-1375, 2007.

Wong S.K., Chin K.Y., Suhaimi F.H., Ahmad F., Ima-Nirwana S. Vitamin E as a potential interventional treatment for metabolic syndrome: Evidence from animal and human studies. Front. Pharmacol. 8, 444, 2017.

Zhao L., Kang I., Fang X.,Wang W. ,Lee M.A., Hollins R.R., Marshall M.R., Chung S. Gamma-tocotrienol attenuates high-fat diet-induced obesity and insulin resistance by inhibiting adipose inflammation and M1 macrophage recruitment. Int. J. Obes. (Lond.) 39, 438-446, 2015.

Budin S.B., Othman F., Louis S.R., Bakar M.A., Das S.,Mohamed J. The effects of palm oil tocotrienol- rich fraction supplementation on biochemical parameters, oxidative stress and the vascular wall of streptozotocin-induced diabetic rats. Clinics (Sao Paulo) 64, 235-244, 2009.

Kawanaka M., Nishino K.,Nakamura J., Suehiro M., Goto D., Urata N., Oka T., Kawamoto H., Nakamura H., Yodoi J., Hino K., Yamada G. Treatment of nonalcoholic steatohepatitis with vitamins E and C: a pilot study. Hepat. Med. 4, 11-16, 2013.

Chan A.C., Tran K. R,R,R-alpha-tocopherol potentiates prostacyclin release in human endothelial cells. Evidence for structural specificity of the tocopherol molecule. Biochim.Biophys. Acta 2, 189-197, 1990.

Rizvi S., Raza S.T., Ahmed F., Ahmad A., Abbas S., Mahdi F. The Role of Vitamin E in Human Health and Some Diseases. Sultan Qaboos Univ. Med. J. 14, 157-165, 2014.

Ellulu M.S. Obesity, cardiovascular disease, and role of vitamin C on inflammation: a review of facts and underlying mechanisms. Inflammopharmacology 25, 313-328, 2017.

Abdali D., Samson S.E., Grover A.K. How effective are antioxidant supplements in obesity and diabetes?. Med. Princ. Pract. 24, 201-215, 2015.

Carcamo J.M., Pedraza A., Ojeda O.B., Zhang B., Sanchez R., Golde D.W. Vitamin C Is a Kinase Inhibitor: Dehydroascorbic Acid Inhibits IκBα Kinase β. Mol. Cell Biol. 24, 6645-6652, 2004.

Jang I.-S., Ko Y.-H., Moon Y.-S., Sohn S.-H. Effects of vitamin C or E on the pro-inflammatory cytokines, heat shock protein 70 and antioxidant status in broiler chicks under summer conditions. Asian Aust. J. Anim. Sci. 27, 749-756, 2014.

Ottoboni F., Otoboni A. Ascorbic acid and the immune system. J. Orthomol. Med. 20, 179-183, 2005.

Garcia-Diaz D.F., Lopez-Legarrea P., Quintero P., Martinez JA. Vitaminc C in the treatment and/or prevention of obesity. J. Nutr. Sci. Vitaminol. 60, 367-379, 2014.

Rafighi Z., Shiva A., Arab S., Yousof R.M. Association of dietary vitamin C and e intake and antioxidant enzymes in type 2 diabetes mellitus patients. Glob. J. Health Sci. 20, 183-187, 2013.

Haghighatdoost F., Gholami A., Hariri M. Alpha-lipoic acid effect on leptin and adiponectin concentrations: a systematic review and meta-analysis of randomized controlled trials. Eur. J. Clin. Pharmacol. 76, 649-657, 2020.

Salehi B., Yilmaz Y.B., Antika G., Tumer T.B., Mahomoodally M.F., Lobine D., Akram M., Riaz M., Capanoglu E., Sharopov F., Martins N., Cho W.C., Sharifi-Rad J.Insights on the Use of α-Lipoic Acid for Therapeutic Purposes. Biomolecures 9, 356, 2019.

Amrousy D.E., El-Afify D. Effects of alpha lipoic acid as a supplement in obese children and adolescents. Cytokine 130, 155084, 2020.

Capece U., Moffa S., Improta I., Giuseppe G.D., Nista E.C., Cefalo C.M.A., Cinti F., Pontecorvi A., Gasbarrini A., Giaccari A., Mezza T.Alpha-Lipoic Acid and Glucose Metabolism: A Comprehensive Update on Biochemical and Therapeutic Features. Nutrients 21, 15-18, 2022.

Pershadsingh H.A.Alpha-lipoic acid: physiologic mechanisms and indications for the treatment of metabolic syndrome. Expert Opin. Investig. Drugs 16, 291-302, 2007.

Serhiyenko V., Serhiyenko L., Suslik G., Serhiyenko A.Alpha-lipoic acid: mechanisms of action and beneficial effects in the prevention and treatment of diabetic complications. Public Health 7, 174-178, 2018.

Moon H.S. Chemopreventive effects of alpha lipoic acid on obesity-related cancers. Ann. Nutr. Metab. 68,137-144, 2016.

Cha Y.S. Effects of L-carnitine on obesity, diabetes, and as an ergogenic aid. Asia Pac. J. Clin. Nutr. 17, 306-308, 2008.

Zhao H., Li N. Role of carnitine in non-alcoholic fatty liver disease and other related diseases: An update. Front Med. (Lausanne) 8, 689042, 2021.

Normann P.T., Flatmark T. Long-chain acyl-CoA synthetase and “outer” carnitine long-chain acyltransferase activities of intact brown adipose tissue mitochondria. Biochim. Biophys. Acta 530, 461- 473, 1978.

Askarpour M., Hadi A., Miraghajani M., Symonds M.E., Sheikhi A., Ghaedi E. Beneficial effects of l- carnitine supplementation for weight management in overweight and obese adults: An updated systematic review and dose-response meta-analysis of randomized controlled trials. Pharmacol. Res. 151, 104554, 2020.

Liu L., Zhang D.M., Wang M.X., Fan C.Y., Zhou F., Wang S.J., Kong L.D. The adverse effects of long- term l-carnitine supplementation on liver and kidney function in rats. Hum. Exp. Toxicol. 34, 1148-1161, 2015.

Zozina V.I., Covantev S., Goroshko O.A., Krasnykh L.M., Kukes V.G. Coenzyme Q10 in cardiovascular and metabolic diseases: Current state of the problem. Curr. Cardiol. Rev. 14, 164-174, 2018.

Alam M.A., Rahman M.M.Mitochondrial dysfunction in obesity: potential benefit and mechanism of Co-enzyme Q10 supplementation in metabolic syndrome. J. Diabetes Metab. Disord. 13, 60, 2014.

Casagrande D., Waib P.H., Jordão Júnior A.A. Mechanisms of action and effects of the administration of coenzyme Q10 on metabolic syndrome. J. Nutr. Int. Metabol. 13.26-32, 2018.

Bhagavan H.N., Chopra R.K. Plasma coenzyme Q10 response to oral ingestion of coenzyme Q10 formulations. Mitochondrion 7, 78-88, 2007.

Saini R. Coenzyme Q10: The essential nutrient. J. Pharm. Bioallied. Sci. 3, 466-467, 2011.

Neyrinck A.M., Catry E., Sohet F.M., Cani P.D., Pachikian B.D., Bindels L.B., Delzenne N.M.Lack of anti-inflammatory effect of coenzyme Q10 supplementation in the liver of rodents after lipopolysaccharide challenge. Clin Nutr Exper 1, 10-18, 2015.

Zhang P., Yang C., Guo H., Wang J., Lin S., Li H., Yang Y., Ling W.Treatment of coenzyme Q10 for 24 weeks improves lipid and glycemic profile in dyslipidemic individuals. J. Clin. Lipidol. 12, 417-427, 2018.

Lee B.J., Huang Y.C., Chen S.J., Lin P.T.Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with coronary artery disease. Nutrition 28, 250-255, 2012.

Tsai K.L., Chen L.H., Chiou S.H., Chiou G.Y., Chen Y.C., Chou H.Y., Chen L.K., Chen H.Y., Chiu T.H., Tsai C.S., Ou H.C. Coenzyme Q10 suppresses oxLDL-induced endothelial oxidative injuries by the modulation of LOX-1-mediated ROS generation via the AMPK/PKC/NADPH oxidase signaling pathway. Mol. Nutr. Food Res. 55, 227-240, 2011.

Marreiro D.D.N., Cruz K.J.C., Morais J.B.S., Beserra J.B., Severo J.S., Oliveira A.R.S. Zinc and oxidative stress: Current mechanisms. Antioxidants (Basel) 6. 2017.

Fukunaka A., Fujitani Y. Role of Zinc Homeostasis in the pathogenesis of Diabetes and Obesity. Int J Mol Sci 19, 476, 2018.

Muñoz I.G., Moran J.F., Becana M., Montoya G. The crystal structure of an eukaryotic iron superoxide dismutase suggests intersubunit cooperation during catalysis. Protein Sci. 14, 387-394, 2005.

Altobelli G.G., Noorden S.V., Balato A., Cimini V.Copper/Zinc Superoxide Dismutase in Human Skin: Current Knowledge. Front Med. 7, 183, 2020.

Ruttkay-Nedecky B., Nejdl L., Gumulec J., Zitka O., Masarik M., Eckschlager T., Stiborova M., Adam V., Kizek R. The Role of metallothionein in oxidative stress. Int. J. Mol. Sci. 14, 6044-6066, 2013.

Clegg M.S., Hanna L.A., Niles B.J., Momma T.Y., Keen C.L. Zinc deficiency-induced cell death. IUBMB Life 57, 661-669, 2005.

Lima V.B.D.S., Sampaio F.D.A., Bezerra D.L.C., Neto J.M.M., Marreiro D.D.N. Parameters of glycemic control and their relationship with zinc concentrations in blood and with superoxide dismutase enzyme activity in type 2 diabetes patients. Arq. Bras Endocrinol. Metabol. 55, 701-707, 2011.

Wang X., Wu W., Zheng W., Fang X., Chen L., Rink L., Min J., Wang F. Zinc supplementation improves glycemic control for diabetes prevention and management: a systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 110, 76-90, 2019.

Rosa A.C., Corsi D., Cavi N., Bruni N., Dosio F. Superoxide Dismutase Administration: A Review of Proposed Human Uses. Molecures 26, 1844, 2021.

Carillon J., Rouanet J.M., Cristol J.P., Brion R. Superoxide dismutase administration,a potentional therapy against oxidative stress related diseases: several routes of supplementation and proposal of an original mechanism of action. Pharm. Res. 30, 2718-2728, 2013.

Afonso V., Santos G., Collin P., Khatib A.M., Mitrovic D.R., Lomri N., Leitman D.C., Lomri A. Tumor necrosis factor-α down-regulates human Cu/Zn superoxide dismutase 1 promoter via JNK/AP-1 signaling pathway. Free Radic. Biol. Med. 41, 709-721, 2006.

Rajendran P., Nandakumar N., Rengarajan T., Palaniswami R., Gnanadhas E.N., Lakshminarasaiah U., Gopas J., Nishigaki I. Antioxidants and human diseases. Clin. Chim. Acta 436, 332-47, 2014.

Kiningham K.K., Xu Y., Daosukho C., Popova B., Clair D.K.S. Nuclear factor κΒ-dependent mechanisms coordinate the synergistic effect of PMA and cytokines on the induction of superoxide dismutase 2. Biochem. J. 353, 147-156, 2001.

Saxena P., Selvaraj K., Khare S.K., Chaudhary N. Superoxide dismutase as multipotent therapeutic antioxidant enzyme : Role in human diseases. Biotechnol. Lett. 44, 1-22, 2022.

Coudriet G.M ., Greenwood M.M.D., Previte D.M., Marre M.L., O’Connor E.C., Novak E.A., Vincent G., Mollen K.P., Lee S., Dong H.H ., Piganelli J.D. reatment with a Catalytic Superoxide Dismutase (SOD) Mimetic improves liver steatosis, insulin sensitivity, and inflammation in obesity-induced type 2 diabetes. Antioxidants (Basel) 6, 85, 2017.

Natarajan G., Periotte-Olson C., Bhinderwala F., Powers R., Desouza C.V., Talmon G.A., Yuhang J., Zimmerman M.C., Kabanov A.V., Saraswathi V. Nanoformulated Copper/Zinc superoxide dismutase exerts differential effects on glucose versus lipid homeostasis depending on the diet composition possibly via altered AMPK signaling. Transl. Res. 188, 10-26, 2017.

Perriotte-Olson C., Adi N., Manickam D.S., Westwood R.A., Desouza C.V., Natarajan G., Crook A., Kabanov A.V., Saraswathi V. Nanoformulated copper/zinc superoxide dismutase reduces adipose inflammation in obesity. Obesity (Silver Spring) 24, 148-156, 2016.

Samuni Y., Cook J.A., Choudhuri R., DeGraff W., Sowers A.L., Krishna M.C., Mitchell J.B. Inhibition of adipogenesis by tempol in 3T3-L1 Cells. Free Radic Biol Med 49, 667-673, 2010.

Dutton S., Trayhurn P. Regulation of angiopoietin-like protein 4/fasting-induced adipose factor (Angptl4/FIAF) expression in mouse white adipose tissue and 3T3-L1 adipocytes. Br J Nutr 100, 18- 26, 2008.

Cui R., Gao M., Qu S., Liu D. Overexpression of superoxide dismutase 3 gene blocks high fat diet- induced obesity, fatty liver and insulin resistance. Gene Ther. 21, 840-848, 2014.

Shin S.K., Cho H.W., Song S.E., Song D.K. Catalase and nonalcoholic fatty liver disease. Pflügers Arch. 470, 1721-1737, 2018.

Furukawa S., Fujita T., Shimabukuro M., Iwaki M., Yamada Y., Nakajima Y., Nakayama O., Makishima M., Matsuda M., Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 114, 1752-1761, 2004.

Shin S.K., Cho H.W., Song S.E., Bae J.H., Im S.S., Hwang I., Ha H., Song D.K.Ablation of catalase promotes non-alcoholic fatty liver via oxidative stress and mitochondrial dysfunction in diet-induced obese mice. Pflügers Arch 471, 829-843, 2019.

Shin S.K., Cho H.W., Song S.E., Im S.S., Bae J.H. Oxidative stress resulting from the removal of endogenous catalase induces obesity by promoting hyperplasia and hypertrophy of white adipocytes. Redox Biol. 37, 101749, 2020.

Goyal R., Singhai M., Faizy A.F. Glutathione peroxidase activity in obese and nonobese diabetic patients and role of hyperglycemia in oxidative stress. J. Midlife Health 2, 72-76, 2011.

Song E., Su C., Fu J., Xia X., Yang S., Xiao C., Lu B., Chen H., Sun Z., Wu S., Song Y. Selenium supplementation shows protective effects against patulin-induced brain damage in mice via increases in GSH-related enzyme activity and expression. Life Sci. 109, 37-43, 2014.

Bermingham E.M., Hesketh J.E., Sinclair B.R., Koolaard J.P., Roy N.C. Selenium-enriched foods are more effective at increasing glutathione peroxidase (GPx) activity compared with selenomethionine: A Meta-Analysis. Nutrients 6, 4002-4031.2014.

De Souza R.G.M., Gomes A.C., Navarro A.M., Da Cunha L.C., Silva M.A.C., Barbosa F.J., Mota J.F. Baru almonds increase the activity of glutathione peroxidase in overweight and obese women: A randomized, placebo-controlled trial. Nutrients 11, 1750, 2019.

Guerini M., Condro G., Friuli V., Maggi L., Perugini P. N-acetylcysteine (NAC) and its role in clinical practice management of cystic fibrosis (CF): A Review. Pharmaceuticals (Basel) 15, 217, 2022.

Schmitt B., Vicenzi M., Garrel C., Denis F.M. Effects of N-acetylcysteine, oral glutathione (GSH) and a novel sublingual form of GSH on oxidative stress markers: A comparative crossover study. Redox Biol. 6, 198-205, 2015.

Dludla P.V., Mazibuko-Mbeje S.E., Nyambuya T.M., Mxinwa V., Tiano L., Marcheggiani F., Cirilli I., Louw J., Nkambule B.B. The beneficial effects of N-acetyl cysteine (NAC) against obesity associated complications: A systematic review of pre-clinical studies. Pharmacol. Res. 146, 104332, 2019.

Calzadilla P., Gomez-Serrano M., Santos E.G., Schiappacasse A., Abalde Y., Calvo J.C., Peral B., Guerra L.N. N-Acetylcysteine affects obesity-related protein expression in 3T3-L1 adipocytes. Redox Rep. 18, 210-218, 2013.

Lasram M.M., Dhouib I.B., Annabi A., Fazaa S.E., Gharbi N. A review on the possible molecular mechanism of action of N-acetylcysteine against insulin resistance and type-2 diabetes development. Clin. Biochem. 48, 1200-1208, 2015.

Dludla P.V., Nkambule B.B., Mazibuko-Mbeje E., Nyambuya T.M., Marcheggiani F., Cirilli I., Ziqubu K., Shabalala S.C., Johnson R., Louw J., Damiani E., Tiano L.N-Acetyl Cysteine Targets Hepatic Lipid Accumulation to Curb Oxidative Stress and Inflammation in NAFLD: A Comprehensive Analysis of the Literature. Antioxidants (Basel) 9, 1283, 2020.

Shen F.C., Weng S.W., Tsao C.F., Lin H.Y., Chang C.S., Lin C.Y., Lian W.S., Chuang J.H., Lin T.K., Liou C.W., Wang P.W. Early intervention of N-acetylcysteine better improves insulin resistance in diet- induced obesity mice. Free Radic. Res. 52, 1296-1310, 2018.

Ammon H.P., Muller P.H., Eggstein M., Wintermantel C., Aigner B., Safayhi H., Stutzle M., Renn W. Increase in glucose consumption by acetylcysteine during hyperglycemic clamp. A study with healthy volunteers. Arzneimittelforschung 42, 642-645, 1992.

Haber C.A., Lam T.K.T., Yu Z., Gupta N., Goh T., Bogdanovic E., Giacca A., Fantus I.G. N- acetylcysteine and taurine prevent hyperglycemia-induced insulin resistance in vivo: possible role of oxidative stress. Am J Physiol. Endocrinol. Metab. 285, 744-753, 2003.

Ismael M.A., Talbot S., Carbonneau C.L., Beauséjour C.M., Couture R. Blockade of sensory abnormalities and kinin B(1) receptor expression by N-acetyl-L-cysteine and ramipril in a rat model of insulin resistance. Eur. J. Pharmacol. 589, 66-72, 2008.

Wang T., Mao X., Li H., Qiao S., Xu A., Wang J., Lei S., Liu Z., Ng K.F.J., Wong G.T., Vanhoutte P.M., Irwin M.G., Xia Z. N-Acetylcysteine and allopurinol up-regulated the Jak/STAT3 and PI3K/Akt pathways via adiponectin and attenuated myocardial postischemic injury in diabetes. Free Radic. Biol. Med. 63, 291- 303, 2013.

Gibson K.R., Winterburn T.J., Barrett F., Sharma S., MacRury S.M., Megson I.L. Therapeutic potential of N-acetylcysteine as an antiplatelet agent in patients with type-2 diabetes. Cardiovasc. Diabetol. 10, 43, 2011.

Thong-Ngam D., Samuhasaneeto S., Kulaputana O., Klaikeaw N. N-acetylcysteine attenuates oxidative stress and liver pathology in rats with non-alcoholic steatohepatitis. World J. Gastroenterol. 13, 5127- 5132, 2007.

Dludla P.V., Nkambule B.B., Dias S.C., Johnson R. Cardioprotective potential of N-acetyl cysteine against hyperglycaemia-induced oxidative damage: a protocol for a systematic review. Syst. Rev. 6, 96, 2017.

Harchegani A.B., Rostami S., Mohsenifar Z., Dafchahi A.B., Moghadam F.M., Jaafarzadeh M., Saraabestan S., Ranji N. Anti-apoptotic properties of N-Acetyl cysteine and its effects on of Liver X receptor and Sirtuin 1 expression in the liver of rats exposed to Lead. J. Trace Elem. Med. Biol. 74, 127070, 2022.

Langi P., Kiokias S., Varzakas T., Proestos C. Carotenoids: from plants to food and feed industries. Methods Mol. Biol. 1852, 57-71, 2018.

Moran N.E., Mohn E.S., Hason N., Erdman Jr J.W., Johnson E.J. Intrinsic and extrinsic factors impacting absorption, metabolism, and health effects of dietary carotenoids. Adv. Nutr. 9, 465-492, 2018.

Johnson Q.R., Mostofian B., Gomez G.F., Smith J.C., Cheng X. Effects of carotenoids on lipid bilayers. Phys. Chem. Chem. Phys. 20, 3795-3804, 2018.

Bohn T., Desmarchelier C., Dragsted L.O., Nielsen C.S., Stahl W., Rühl R., Keijer J., Borel P. Host- related factors explaining interindividual variability of carotenoid bioavailability and tissue concentrations in humans. Mol. Nutr. Food Res. 61, 1600685, 2017.

Wang W., Connor S.L., Johnson E.J., Klein M.L., Hughes S., E Connor W. Effect of dietary lutein and zeaxanthin on plasma carotenoids and their transport in lipoproteins in age-related macular degeneration. Am. J. Clin. Nutr. 85, 762-769, 2007.

Coronel J., Pinos I., Amengual J. β-carotene in obesity research: Technical considerations and current status of the field. Nutrients 11, 842, 2019.

Schwarz E.J., Reginato M.J., Shao D., Krakow S.L., Lazar M.A. Retinoic acid blocks adipogenesis by inhibiting C/EBPbeta-mediated transcription. Mol. Cell Biol. 17, 1552-1561, 1997.

Huang J., Weinstein S.J., Yu K., Männistö S., Albanes D. Serum beta-carotene and overall and cause- specific mortality: A prospective cohort study. Circ. Res. 123, 1339-1349, 2018.

Beydoun M.A., Chen X., Jha K., Beydoun H.A., Zonderman A.B., Canas J.A. Carotenoids, vitamin A, and their association with the metabolic syndrome: a systematic review and meta-analysis. Nutr. Rev. 77, 32- 45, 2019.

Friedman M. Anticarcinogenic, cardioprotective, and other health benefits of tomato compounds lycopene, α-tomatine, and tomatidine in pure form and in fresh and processed tomatoes. J. Agric. Food Chem. 61, 9534-9550, 2013.

Downloads

Published

11-06-2024

Issue

Section

Review Articles