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In the present sort-review, a brief development of the structure, 
chemical and biological activities of carnosine dipeptide is initially 
carried out. The mechanisms by which carnosine prevents the de-
velopment of diabetic nephropathy are then analyzed, demonstrat-
ing the role of carnosine in the binding of serum carnosinase which 
has been shown to be related to both the development and progres-
sion of diabetic nephropathy. 
The effects of carnosine on factors such as transforming growth 
factor-β (TGF-β), serum carnosinase complexation, prevention of 
advanced glycation end products (AGEs) formation and potential 
targets such as glycine N-methyltransferase (GNMT), caspase -1 and 
Nrf2 pathway, are also analyzed.
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1. Introduction

Carnosine was discovered and its structure deter-
mined at the beginning of the 20th century by the 
Russian scientist W.S. Gulewich.1 It was the first and 
simplest example of a biologically active peptide. 
The first decades were devoted to studies of the 
structure and properties of the component. It was 
understood that carnosine has a direct relationship 
with the function of body tissues. In 1953 another 

Russian scientist, S. E. Severin, demonstrated that 
carnosine effectively prevented the action of lactic 
acid that causes a decrease in pH and weakens mus-
cles. When carnosine is added, muscles recover their 
capacity for work almost immediately and contract 
as if they had never been exhausted. This is known 
as the “Severin effect”.2

Lately there has been widespread interest in this 
natural non-toxic substance, boosted by important 
American, Russian and British discoveries about its 
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antiaging actions.3-5 The most important research, 
however, was done in 2002 in the USA, where the 
team of Dr. Michael Chez reported data on the very 
significant effects of carnosine in autistic children.6

The MEDLINE database includes over 2000 pub-
lished studies on carnosine.

Carnosine (Figure 1) is a natural dipeptide, con-
sisting of β-alanine and L-histidine, linked together 
by a peptide bond.7-8 Carnosine occurs in various 
muscle tissues of various organs and brain tissues.9 

The various regions that the molecule has such as 
the carboxyl group, the terminal amino group, the 
amino group of the amide bond and the imidazole 
ring give carnosine an increased buffering capacity 
that makes it able to protect against increased acid-
ity created by the production of lactic acid inside 
muscle tissues after vigorous activity. 10-12 The aver-
age pK values   of these groups are 2.64 for the car-
boxylate, 6.77 for the Nτ nitrogen of the imidazole 
ring, and 9.37 for the amino group. The existence of 
mobile hydrogens can explain the different tauto-
meric types.13 

Figure 1. The numbering of the neutral Carnosine 
(carnH4)0; N3 is characterized as Nπ while N4 as Nτ.28 

Due to the fact that carnosine reacts with various 
active reagents such as hydroxyl radical, superoxide 
or “singlet” oxygen, it has been extensively report-
ed that it has an antioxidant effect.14-19 The carboxyl 
group, amino groups and N atoms of the imidazole 
ring make carnosine a biologically active dipeptide 
and an effective complexing agent and allow it to in-
teract with metalloenzymes or with metal ions with-
in the body such as copper, zinc, iron and calcium .20-

22 Attempts to characterize complexes of carnosine 

other than Cu(II) and a few of its compounds with 
Zn(II), with vanadium, cobalt, ruthenium and only 
one report of a complex of Ni(II) have been report-
ed.23-26

Due to both its structure and its non-toxicity, car-
nosine exhibits a special biological activity. In this 
article, its actions, along with the important role of 
carnosine against diabetic nephropathy will be also 
discussed. 

2. Biological activity of carnosine

Some of its main biological actions are: 
- Significantly contributes to the maintenance of 

acid-base balance in the skeletal muscle buffer, when 
the H+ concentration increases, due to the produc-
tion of lactic acid during intense physical exercise.33 

- Antioxidant actions. 17, 29-32 
- Ability to inactivate reactive oxygen species, and 

to trap free radicals. 34,35 

- Binding of aldehydes. 36 
- prevention of glycosylation. 27 
- Prevention of carbonylation of proteins. 37 
- Function related to neurotransmitters. 38 
- Formation of chelate compounds with metals. 23-26

In general, carnosine is a compound that binds al-
dehydes, reacts with glycosylated proteins,39 sugars 
and phospholipids.40 Thus, carnosine is a potential 
modulator against diabetic complications, athero-
sclerosis, Alzheimer’s, Parkinson’s, epilepsy, autism, 
dyslexia, Attention of deficit hyperactivity disorder 
(AD/HD), schizophrenia and related syndromes. 

Although zinc and/or copper are found in many 
neuronal pathways in the brain, concentrations of 
zinc and copper in the olfactory bulb (the target of 
input afferents from sensory neurons in the nose) 
are among the highest in the Central Nervous Sys-
tem (C.N.S.). The role of zinc and copper in the C.N.S. 
is the modulation of neuronal excitability. However, 
zinc and copper have also been implicated in a vari-
ety of neurological conditions including Alzheimer’s 
disease, Parkinson’s disease, stroke, and seizures. 
Trombley et al. have reviewed the modulatory ef-
fects that carnosine may have on the ability of zinc 
and copper to influence neuronal excitability and ex-
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ert neurotoxic effects on the olfactory system.41

Aldini et al. studied and explained the mecha-
nism of action of carnosine as an inhibitor of cy-
totoxic α, β-unsaturated aldehydes using 4-hy-
droxy-trans-2,3-nonenal (HNE) as a model aldehyde. 
It was shown that in phosphate buffer pH 7.4 car-
nosine was 10 times more active as an HNE inhib-
itor than L-histidine and N-acetyl-carnosine while 
β-alanine was completely ineffective. This indicates 
that the two cognate amino acids act synergistically 
as a dipeptide and excess β-alanine catalyzes the ad-
dition of histidine to HNE. Two classes of carnosine 
reaction products are identified, in a pH-dependent 
equilibrium: (a) a “Michael” adduct, stabilized as 
a five-membered cyclic hemiacetal ring, and (b) a 
macrocyclic imine derivative. The addition chemis-
try of carnosine to HNE appears to begin with the 
formation of a reversible α, β-unsaturated imine and 
proceeds with ring closure via an intramolecular 
“Michael” addition. 42

3. The important role of carnosine against 
diabetic nephropathy

Diabetic nephropathy (DN) is a common microvas-
cular complication of diabetes and the main cause of 
end-stage nephropathy (ESRD). Inflammation and 
fibrosis play an important role in the development 
and progression of DN. 48 The risk of diabetic ne-
phropathy is partially genetically determined. Dia-
betic nephropathy is linked to a gene locus on chro-
mosome 18q22.3-q23.

B. Janssen et al. aimed to identify the causative 
gene, on chromosome 18, and study the mechanism 
by which the product of this gene could be involved 
in the development of diabetic nephropathy. The 
effect of carnosine on the production of extracel-
lular matrix components and transforming growth 
factor-β (TGF-β) after exposure to 5 and 25 mmol/l 
d-glucose was studied in cultured human podocytes 
and mesangial cells, respectively. A trinucleotide 
repeat in exon 2 of the CNDP1 gene, coding for a 
leucine repeat in the leader peptide of the carnosi-
nase-1 precursor, was associated with nephropathy.

Carnosine inhibited the increased production of fi-

bronectin and collagen type VI in podocytes and the 
increased production of TGF-β in mesangial cells in-
duced by 25 mmol/l glucose. Diabetic patients with 
the CNDP1 Mannheim variant are less susceptible 
for nephropathy. 27

Also, J.H. Kang, in his study demonstrated that car-
nosine and homocarnosine inhibited the production 
of hydroxyl radicals in the L-3,4-dihydroxyphenyla-
lanine/Fe3+ (DOPA) system. The results suggest that 
carnosine and homocarnosine act as scavengers of 
hydroxyl radicals to protect against DNA damage. 
It is suggested that carnosine and homocarnosine 
may be explored as potential therapeutic agents for 
pathologies involving DNA damage by DOPA oxida-
tion. 43

Recent biochemical and clinical evidence im-
plicates human serum carnosinase in a variety of 
pathological conditions, such as neurological dis-
orders and diabetic nephropathy, suggesting that 
this enzyme is of greatest interest as a novel drug 
target. The study by Vistoli et al.,44 was conducted 
to elucidate the role of serum carnosinase and its 
catalytic activity and to analyze the mechanism by 
which citrate ions increase the catalytic activity of 
carnosinase.

A homologous model of the enzyme was obtained 
based on β-alanine synthetase and its active center 
was found to bind known substrates carnosine, 
homocarnosine and anserine with bonds that fa-
vor catalysis. Citrate ions appear to bind at only 
three well-defined sites involving both ions and 
hydrogen bonds. Molecular dynamics simulations 
demonstrate that citrate has a marked effect on the 
three-dimensional structure of carnosinase, increas-
ing the binding capacity of carnosine on the catalytic 
side. This is one of the first reports to demonstrate 
the molecular mechanism of an allosteric enzyme 
activator using molecular dynamics simulations.

Zn(II) located in the catalytic domain and in-
volved in interactions with His106, Gly115, Asp139, 
Glu173, Glu174 and two water molecules appear in 
β-alanine synthase (Figure 2).

Emerging evidence suggests that dysregulation of 
cellular redox homeostasis and chronic inflammato-
ry processes are involved in the pathogenesis of kid-
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ney disorders. In this light, the endogenous dipep-
tide carnosine (β-alanyl-L-histidine) and hydrogen 
sulfide (H2S) exert cytoprotective actions through 
modulation of redox-dependent resistance path-
ways during oxidative stress and inflammation.45 
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Figure 2. Two-dimensional representation of the 
interaction pattern between carnosinase and the car-
nosine substrate. The model shows how the enzyme 
recognizes (binds) the amino group, the carboxyl 
group, and the unsubstituted imidazole ring. The 
amide bond is simultaneously bound for recognition 
and polarized for catalysis.

High levels of transforming growth factor β 
(TGFβ) in urine stimulate the normal pathway 
(ALK 5, Smad 2/3) and the alternative pathway 
ALK 1, Smad 1/5). Activation of the canonical 
pathway causes accumulation of extracellular ma-
trix in the glomerular basement membrane (GBM) 
and mesangium. In addition, activation of the al-
ternative pathway causes podocyte injury that 
causes foot process elimination. It has been clini-
cally shown that the use of oral carnosine supple-
mentation can reduce TGFβ levels in patients with 
type 2 diabetes mellitus. 46 

It is well established that the formation of ad-
vanced glycation end products (AGEs) is a signif-
icant problem in uremic patients undergoing peri-
toneal dialysis (PD). In this way in a related study, 
peritoneal dialysis solutions (1.5% dextrose) were 
incubated with human serum albumin (HSA) or col-
lagen (type IV) with or without 10 mmol/L of each 
of carnosine, anserine, homocarnosine, histidine, 

and aminoguanidine. The rate of AGE formation was 
monitored by fluorescence spectrophotometry. 

It was found that carnosine and related com-
pounds showed effective regression of AGE for-
mation in both types of proteins in both long-term 
and short-term exposure to PD fluids with an effi-
cacy rate of the order carnosine > homocarnosine > 
anserine, aminoguanidine > histidine in long-term 
time exposure and homocarnosine > carnosine > 
aminoguanidine > anserine > histidine in short-term 
exposure. 47

Glycine N-methyltransferase is a multifunction-
al protein that regulates the cellular pool of me-
thyl groups by controlling the ratio of S-adenos-
ylmethionine (SAM) to S-adenosylhomocysteine   
(SAH). 

Recent studies by Liu X.Q. et. al., showed that 
carnosine reversed the onset, clinical symptoms, 
and renal tubular damage in DN patients. More 
specifically, glycine N-methyltransferase (GNMT), 
a multifunctional protein that regulates the cellu-
lar pool of methyl groups by controlling the ratio 
of S-adenosylmethionine (SAM) to S-adenosylho-
mocysteine   (SAH), was significantly down-regu-
lated in the serum of DN type 1 patients and in 
renal tissues of DN mice. Using tubular epitheli-
al cells (TECs), it was confirmed that increased 
GNMT expression mimics the protective role of 
carnosine in reducing inflammation and fibrosis 
while inhibition of GNMT expression abolished 
the protective effects of carnosine. In this particu-
lar research, using web-prediction algorithms, 
cellular thermal shift assay (CETSA) and molecu-
lar docking, it was shown that the carnosine mol-
ecule is a target of GNMT. 48

Caspase-1 was identified as interleukin-1β-con-
verting enzyme (ICE, caspase-1) and was initially 
identified as the protease responsible for the mat-
uration of pro-interleukin (IL)-1β to its pro-inflam-
matory, biologically active form. In a recent study, 
capase-1 and gadermin D were found to be in-
creased in renal biopsy tissue of DN patients. This 
study was the first to demonstrate a novel role for 
carnosine in ameliorating podocyte injury by inhib-
iting apoptosis through targeting caspase-1. Thus, 
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carnosine may have potential as a therapeutic agent 
in the treatment of DN by targeting caspase-1. 49

The nuclear factor erythroid 2–related factor 2 
(Nrf2) is an emerging regulator of cellular resist-
ance to oxidants. 50 In the recent review article by 
Caruso G. et. al. evidence on the therapeutic poten-
tial of carnosine, as an endogenous antidote, that 
can rescue the Nrf2 pathway and subsequently re-
verse drug-induced cardiotoxicity and neurotoxici-
ty is reviewed. 51

3. Conclusions

The effect of carnosine on factors such as transform-
ing growth factor-β (TGF-β), serum carnosinase compl-
exation, prevention of advanced glycation end products 
(AGEs) formation and potential targets such as glycine 
N-methyltransferase (GNMT), caspase -1 and Nrf2 
pathway, make the carnosine molecule an important 
factor either in preventing the manifestation of DN or 
in preventing its progression. 
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